Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
BMC Genomics ; 25(1): 421, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684979

RESUMEN

BACKGROUND: Herpetospermum pedunculosum (Ser.) C. B. Clarke is a traditional Chinese herbal medicine that heavily relies on the lignans found in its dried ripe seeds (Herpetospermum caudigerum), which have antioxidant and hepatoprotective functions. However, little is known regarding the lignan biosynthesis in H. pedunculosum. In this study, we used metabolomic (non-targeted UHPLC-MS/MS) and transcriptome (RNA-Seq) analyses to identify key metabolites and genes (both structural and regulatory) associated with lignan production during the green mature (GM) and yellow mature (YM) stages of H. pedunculosum. RESULTS: The contents of 26 lignan-related metabolites and the expression of 30 genes involved in the lignan pathway differed considerably between the GM and YM stages; most of them were more highly expressed in YM than in GM. UPLC-Q-TOF/MS confirmed that three Herpetospermum-specific lignans (including herpetrione, herpetotriol, and herpetin) were found in YM, but were not detected in GM. In addition, we proposed a lignan biosynthesis pathway for H. pedunculosum based on the fundamental principles of chemistry and biosynthesis. An integrated study of the transcriptome and metabolome identified several transcription factors, including HpGAF1, HpHSFB3, and HpWOX1, that were highly correlated with the metabolism of lignan compounds during seed ripening. Furthermore, functional validation assays revealed that the enzyme 4-Coumarate: CoA ligase (4CL) catalyzes the synthesis of hydroxycinnamate CoA esters. CONCLUSION: These results will deepen our understanding of seed lignan biosynthesis and establish a theoretical basis for molecular breeding of H. pedunculosum.


Asunto(s)
Cucurbitaceae , Lignanos , Metaboloma , Transcriptoma , Lignanos/metabolismo , Lignanos/biosíntesis , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Regulación de la Expresión Génica de las Plantas , Semillas/metabolismo , Semillas/genética , Perfilación de la Expresión Génica , Espectrometría de Masas en Tándem
2.
Respiration ; 103(3): 111-123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38342097

RESUMEN

INTRODUCTION: Benign airway stenosis (BAS) is a severe pathologic condition. Complex stenosis has a high recurrence rate and requires repeated bronchoscopic interventions for achieving optimal control, leading to recurrent BAS (RBAS) due to intraluminal granulation. METHODS: This study explored the potential of autologous regenerative factor (ARF) for treating RBAS using a post-intubation tracheal stenosis canine model. Bronchoscopic follow-ups were conducted, and RNA-seq analysis of airway tissue was performed. A clinical study was also initiated involving 17 patients with recurrent airway stenosis. RESULTS: In the animal model, ARF demonstrated significant effectiveness in preventing further collapse of the injured airway, maintaining airway patency and promoting tissue regeneration. RNA-seq results showed differential gene expression, signifying alterations in cellular components and signaling pathways. The clinical study found that ARF treatment was well-tolerated by patients with no severe adverse events requiring hospitalization. ARF treatment yielded a high response rate, especially for post-intubation tracheal stenosis and idiopathic tracheal stenosis patients. CONCLUSION: The study concludes that ARF presents a promising, effective, and less-invasive method for treating RBAS. ARF has shown potential in prolonging the intermittent period and reducing treatment failure in patients with recurrent tracheal stenosis by facilitating tracheal mucosal wound repair and ameliorating tracheal fibrosis. This novel approach could significantly impact future clinical applications.


Asunto(s)
Estenosis Traqueal , Humanos , Animales , Perros , Estenosis Traqueal/etiología , Estenosis Traqueal/cirugía , Constricción Patológica , Proyectos Piloto , Tráquea/patología , Cicatrización de Heridas/fisiología , Estudios Retrospectivos
3.
Phytother Res ; 35(8): 4401-4410, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33979464

RESUMEN

Xiyanping (XYP) is a Chinese herbal medicine used in the clinic to treat respiratory infection and pneumonia. Recent evidence identified XYP as a potential inhibitor of severe acute respiratory syndrome coronavirus 2, implying XYP as a possible treatment for the coronavirus disease 2019 (COVID-19). Here, we conducted a prospective, multicenter, open-label and randomized controlled trial to evaluate the safety and effectiveness of XYP injection in patients with mild to moderate COVID-19. We consecutively recruited 130 COVID-19 patients with mild to moderate symptoms from five study sites, and randomized them in 1:1 ratio to receive XYP injection in combination with standard therapy or receive standard supportive therapy alone. We found that XYP injection significantly reduced the time to cough relief, fever resolution and virus clearance. Less patients receiving XYP injection experienced disease progression to the severe stage during the treatment process. No severe adverse events were reported during the study. Taken together, XYP injection is safe and effective in improving the recovery of patients with mild to moderate COVID-19. However, further studies are warranted to evaluate the efficacy of XYP in an expanded cohort comprising COVID-19 patients at different disease stages.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos/uso terapéutico , Adulto , Femenino , Humanos , Inyecciones , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Resultado del Tratamiento
4.
J Asian Nat Prod Res ; 19(1): 47-52, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27309618

RESUMEN

A new compounds neopaleaceolactoside (1), along with nine known compounds phyllocoumarin (2), quercetin (3), quercitrin (4), quercetin-3-methyl ether (5), vincetoxicoside B (6), isoquercitrin (7), kaempferol (8), (-)-epicatechin (9), and chlorogenic acid (10), was isolated from Polygonum paleaceum Wall. Their chemical structures were established based on one-dimensional and two-dimensional nuclear magnetic resonance techniques, mass spectrometry and by comparison with spectroscopic data reported. Some selected compounds were screened for their antifungal activity. Quercetin (3), vincetoxicoside B (6), kaempferol (8), and (-)-epicatechin (9) showed synergistic antifungal activities with the FICI values <0.5. A preliminary structure-activity relationship could be observed that free 3-OH in the structure of flavonoids was important for synergistic antifungal activity.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Antioxidantes/aislamiento & purificación , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Polygonum/química , Rizoma/química , Antifúngicos/química , Antioxidantes/química , Antioxidantes/farmacología , Medicamentos Herbarios Chinos/química , Flavonoides/química , Quempferoles/farmacología , Estructura Molecular , Quercetina/análogos & derivados , Quercetina/farmacología , Relación Estructura-Actividad
5.
Zhong Yao Cai ; 39(1): 110-2, 2016 Jan.
Artículo en Zh | MEDLINE | ID: mdl-30080011

RESUMEN

Objective: To isolate and identify the chemical constituents from Polygonum paleaceum. Methods: Chemical constituents were isolated and purified by column chromatography on silica gel,Sephadex HL-20 and macroporous resin etc. The chemical structures were identified by MS,NMR and spectral analysis. Results: Ten compounds were isolated and their structures were elucidated as ethyl chlorogenate( 1),methyl chlorogenate( 2), kaempferol-3-O-α-L-rhamnopyranoside( 3), (-)-epicatechin( 4), paleaceolactoside( 5), protocatechuic acid( 6), kaempferol( 7), gallic acid( 8), chlorogenic acid( 9) and isoquercitrin( 10). Conclusion: Compounds 1,3,6,7 and 10 are isolated from this plant for the first time.


Asunto(s)
Polygonum , Catequina , Ácido Clorogénico/análogos & derivados , Medicamentos Herbarios Chinos , Ácido Gálico , Hidroxibenzoatos , Quempferoles , Espectroscopía de Resonancia Magnética , Quercetina/análogos & derivados
6.
Med Sci Monit ; 21: 2535-41, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26311066

RESUMEN

BACKGROUND: As a traditional Chinese medicine herb, Chonglou (Paris polyphylla var. chensiins) has been used as anticancer medicine in China in recent decades, as it can induce cell cycle arrest and apoptosis in numerous cancer cells. The saponins extract from the rhizoma of Chonglou [Rhizoma Paridis saponins (RPS)] is known as the main active component for anticancer treatment. However, the molecular mechanism of the anticancer effect of RPS is unknown. MATERIAL AND METHODS: The present study evaluated the effect of RPS in non-small-cell lung cancer (NSCLC) A549 cells using the 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry. Subsequently, the expression of several genes associated with cell cycle and apoptosis were detected by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) and Western blotting. RESULTS: RPS was revealed to inhibit cell growth, causing a number of cells to accumulate in the G 1 phase of the cell cycle, leading to apoptosis. In addition, the effect was dose-dependent. Moreover, the results of qRT-PCR and Western blotting showed that p53 and cyclin-dependent kinase 2 (CDK2) were significantly downregulated, and that BCL2, BAX, and p21 were upregulated, by RPS treatment. CONCLUSIONS: We speculated that the RPS could act on a pathway, including p53, p21, BCL2, BAX, and CDK2, and results in G1 cell cycle arrest and apoptosis in NSCLC cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Saponinas/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Quinasa 2 Dependiente de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Expresión Génica/efectos de los fármacos , Genes bcl-2/efectos de los fármacos , Genes p53/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Magnoliopsida/química , Medicina Tradicional China , Plantas Medicinales/química , Proteína X Asociada a bcl-2/genética
7.
Regen Biomater ; 11: rbad116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333727

RESUMEN

Impaired immunohomeostasis in diabetic wounds prolongs inflammation and cytokine dysfunction, thus, delaying or preventing wound-surface healing. Extensive clinical studies have been conducted on cytokine-induced killer (CIK) cells recently, as they can be easily proliferated using a straightforward, inexpensive protocol. Therefore, the function of CIK cells in regulating inflammatory environments has been drawing attention for clinical management. Throughout the current investigation, we discovered the regenerative capacity of these cells in the challenging environment of wounds that heal poorly due to diabetes. We demonstrated that the intravenous injection of CIK cells can re-establish a proregenerative inflammatory microenvironment, promote vascularization and, ultimately, accelerate skin healing in diabetic mice. The results indicated that CIK cell treatment affects macrophage polarization and restores the function of regenerative cells under hyperglycemic conditions. This novel cellular therapy offers a promising intervention for clinical applications through specific inflammatory regulation functions.

8.
Genome Biol Evol ; 15(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36652386

RESUMEN

This study presents a chromosome-level reference genome assembly of a traditional Tibetan medicinal plant, Herpetospermum pedunculosum belonging to the Cucurbitaceae family. Following a combined PacBio high-fidelity sequencing and Hi-C analysis, a final H. pedunculosum genome assembly, 804.11 Mb in length was obtained, 90.45% of which was anchored into ten pseudochromosomes with a contig N50 of 24.39 Mb. In addition, 579.55 Mb repetitive sequences and 23,924 high-confidence protein-coding genes were annotated. Phylogenetic analysis revealed that H. pedunculosum was sister to a clade formed by cucumber, zucchini, and wax gourd. Further whole-genome duplication analysis revealed no recent polyploidization event in the H. pedunculosum genome. The high-quality H. pedunculosum genome presented here will be highly useful in investigating the molecular mechanisms underlying the biosynthesis of its active compounds and adaptation strategies to the extreme environment. It will also provide great insights into comparative genomic studies of Cucurbitaceae and flowering plants.


Asunto(s)
Cucurbitaceae , Cucurbitaceae/genética , Filogenia , Cromosomas , Genoma , Secuencias Repetitivas de Ácidos Nucleicos
9.
J Ethnopharmacol ; 305: 116069, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36572326

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The seeds of Herpetospermum pedunculosum seeds is a traditional Tibetan medicine possessing hepatoprotective effect, but their protective effect on APAP-induced liver injury has not yet been explored. AIM OF THE STUDY: This study aimed at exploring the protective effect and mechanism of the water extract from the seeds of Herpetospermum pedunculosum (HPWE) on APAP-induced liver injury in vitro and in vivo. MATERIALS AND METHODS: In vitro and in vivo models of liver injury were established by APAP treatment of BRL-3A cells or mice. The effect and mechanism of action of HPWE were explored by using cell viability assay, ELISA, immunofluorescence assay, RT-qPCR, histological observation and immunohistochemistry staining, western blotting and high-content imaging system. RESULTS: In vitro experiments showed that HPWE treatment significantly promoted the cell viability, decreased ALT/AST level, and inhibited the ROS accumulation induced by APAP. Furthermore, HPWE and Fer-1 alleviated erastin-induced cell ferroptosis, upregulated GPX4 and SLC7A11 expression, and reduced lipid peroxides production. Further study showed that APAP could also downregulate the expression of GPX4 and SLC7A11, causing cell ferroptosis, and HPWE and Fer-1 counteracted this process. Our in vivo experiments showed that pretreatment with HPWE in APAP-treated mice significantly alleviated the serum ALT/AST level, decreased necrotic cells and inflammatory cell infiltration, upregulated the expression of GPX4 and SLC7A11. Further, it was demonstrated that HPWE treatment downregulated Nrf2 and its downstream target genes, i.e. HO-1 and NQO1 expression at the mRNA and protein levels. HPWE treatment also inhibited the activation of NF-κB p65 and downregulated its target genes, i.e. TNF-α and IL-1ß, expression. CONCLUSION: The present study showed that HPWE could relieve oxidative stress and ferroptosis via activating Nrf2 signaling pathway and inhibiting NF-κB mediated pathway.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Ferroptosis , Animales , Ratones , Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Hígado , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo
10.
BMC Complement Med Ther ; 23(1): 111, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024907

RESUMEN

BACKGROUND: Despite rapid developments in immunotherapy and targeted therapy, dacarbazine (DTIC)-based chemotherapy still has been placed at the first-line for advanced melanoma patients who are after failure of immunotherapy or targeted therapy. However, the limited response rate and survival benefit challenge the DTIC-based chemotherapy for advanced melanoma patients. METHODS: Two melanoma cell lines, A375 and SK-MEL-28 were cultured with PA and DTIC over a range of concentrations for 72 h and the cell viabilities were detected by CCK8 assay. The Bliss model and ZIP model were used for calculating the synergistic effect of PA and DTIC. DNA double-strand breaks in the two cell lines were examined by the Comet assay, and cell apoptosis was analyzed by flow cytometry. The short hairpin RNA (shRNA)-mediated knockdown, Real-time polymerase chain reaction (RT-PCR) and Western blot were performed for molecular analysis. RESULTS: In the present study, we report that Protocatechuic aldehyde (PA) synergistically enhances the cytotoxicity of DTIC to two melanoma cell lines, A375 and SK-MEL-28. The combination of PA and DTIC augments DNA double-strand breaks and increases cell apoptosis. Further mechanism study reveals that PA destabilizes MGMT protein (O-6-Methylguanine-DNA Methyltransferase) through the ubiquitin-proteasome process and directly repairs DTIC-induced genetic lesions. Knockdown of MGMT compromises the synergistic effect between PA and DTIC. CONCLUSION: Our study demonstrates that the bioactive compound, Protocatechuic aldehyde, synergistically promotes the cytotoxicity of DTIC to melanoma cells through destabilization of MGMT protein. It could be a potential candidate for melanoma chemotherapy.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Apoptosis , O(6)-Metilguanina-ADN Metiltransferasa/genética , O(6)-Metilguanina-ADN Metiltransferasa/farmacología , O(6)-Metilguanina-ADN Metiltransferasa/uso terapéutico , ADN/farmacología , ADN/uso terapéutico
11.
Phytomedicine ; 118: 154946, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421766

RESUMEN

BACKGROUND: Asthma is a chronic inflammatory disease that is challenging to treat. Fritillaria unibracteata var. wabuensis (FUW) is the plant origin for the famous Chinese antitussive medicine Fritillaria Cirrhosae Bulbus. The total alkaloids of Fritillaria unibracteata var. wabuensis bulbus (TAs-FUW) have anti-inflammatory properties and may be used to treat asthma. PURPOSE: To explore whether TAs-FUW have bioactivity against airway inflammation and a therapeutic effect on chronic asthma. METHODS: The alkaloids were extracted via ultrasonication in a cryogenic chloroform-methanol solution after ammonium-hydroxide percolation of the bulbus. UPLC-Q-TOF/MS was used to characterize the composition of TAs-FUW. An ovalbumin (OVA)-induced asthmatic mouse model was established. We used whole-body plethysmography, ELISA, western blotting, RT-qPCR, and histological analyses to assess the pulmonary pathological changes in these mice after TAs-FUW treatment. Additionally, TNF-α/IL-4-induced inflammation in BEAS-2B cells was used as an in vitro model, whereby the effects of various doses of TAs-FUW on the TRPV1/Ca2+-dependent NFAT-induced expression of TSLP were assessed. Stimulation and inhibition of TRPV1 receptors by capsaicin (CAP) and capsazepine (CPZ), respectively, were used to validate the effect of TAs-FUW. RESULTS: The UPLC-Q-TOF/MS analysis revealed that TAs-FUW mainly contain six compounds (peiminine, peimine, edpetiline, khasianine, peimisine, and sipeimine). TAs-FUW improved airway inflammation and obstruction, mucus secretion, collagen deposition, and leukocyte and macrophage infiltration, and downregulated TSLP by inhibiting the TRPV1/NFAT pathway in asthmatic mice. In vitro, the application of CPZ demonstrated that the TRPV1 channel is involved in TNF-α/IL-4-mediated regulation of TSLP. TAs-FUW suppressed TNF-α/IL-4-induced TSLP generation expression by regulating the TRPV1/Ca2+/NFAT pathway. Furthermore, TAs-FUW reduced CAP-induced TSLP release by inhibiting TRPV1 activation. Notably, sipeimine and edpetiline each were sufficient to block the TRPV1-mediated Ca2+ influx. CONCLUSION: Our study is the first to demonstrate that TNF-α/IL-4 can activate the TRPV1 channel. TAs-FUW can alleviate asthmatic inflammation by suppressing the TRPV1 pathway and thereby preventing the increase in cellular Ca2+ influx and the subsequent NFAT activation. The alkaloids in FUW may be used for complementary or alternative therapies in asthma.


Asunto(s)
Alcaloides , Asma , Fritillaria , Ratones , Animales , Factor de Necrosis Tumoral alfa , Interleucina-4 , Alcaloides/farmacología , Alcaloides/uso terapéutico , Asma/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Ovalbúmina , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Canales Catiónicos TRPV/uso terapéutico
12.
J Food Sci ; 88(11): 4745-4772, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37751083

RESUMEN

Fritillaria cirrhosa D. Don, which can be used for medicine and food, contains a variety of chemicals including polyphenols, alkaloids, terpenoid, and others that have beneficial biological properties like antihypertension, bacteriostasis, and anti-inflammatory. The ethanolic extract of Fritillaria straw was obtained for this study using ultrasonic-aided extraction, and the amounts of total phenols and total flavonoids were 26.56 ± 1.36 mg GAE/g dw and 18.75 ± 0.80 mg RE/g dw, respectively. Ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry technology was utilized to identify 50 major chemicals in the Fritillaria straw extract (FSE). Meanwhile, the antioxidative activities of FSE were evaluated by 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and Ferric reducing antioxidant power assays in vitro, which pointed out the antioxidative potential of FSE. Additionally, 0.1%, 0.5%, and 1% of FSE and 0.02% butylated hydroxyanisole (BHA) + butylated hydroxytoluene (BHT) (1:1) were separately added to Chinese-style sausage to study their effects on the lipid oxidation, protein oxidation, and quality of the sausage at different storage times. The study found that the effect of adding 1% FSE on carbonyl content, total volatile basic nitrogen, and TVC of sausage could achieve the effect of the 0.02% BHA + BHT (1:1) group on the 35th day, and the thiobarbituric acid reactive substances value and peroxide value of sausage were significantly lower than the control group. Therefore, as one of the candidates to replace synthetic antioxidants, the FSE can be used in the production of Chinese sausages, which has a positive effect on improving the product's quality and extending the shelf life. PRACTICAL APPLICATION: The antioxidative activities of 50 main compounds were identified after the ethanolic extraction of Fritillaria straw. This Fritillaria straw extract was added to Chinese sausage, effectively inhibiting the oxidation of lipids and proteins as well as the decomposition of proteins. Obviously, the Fritillaria straw extract, one of the choices to replace synthetic antioxidants, may be useful for future meat processing, because of its positive impact on the product's quality and shelf life.


Asunto(s)
Antioxidantes , Fritillaria , Productos de la Carne , Extractos Vegetales , Antioxidantes/análisis , Fritillaria/química , Lípidos , Oxidación-Reducción , Extractos Vegetales/química
14.
J Tissue Eng ; 14: 20417314231197604, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674933

RESUMEN

Extracellular vesicle (EV) therapy recently had shown significant efficacy in various diseases. Serum starvation culture (SC) is one of the most widely used methods for collecting EVs. However, SC may cause inadvertent effects and eventually dampen the therapeutic potential of EVs. Therefore, we developed a novel method for EV collection, continuous nutrient supply culture (CC), which can provide an optimal condition for mesenchymal stem cells (MSCs) by continuously supplying essential nutrients to MSCs. By comparing with SC strategy, we revealed that CC could maintain CC-MSCs in a normal autophagy and apoptotic state, which reduced the shunting of EV precursors in cells and useless information material carried by EVs. In CC-MSCs, the expression levels of endosomal sorting complexes required for transport (ESCRT) and targeting GTPase27 (Rab27) were upregulated compared to those in SC-MSCs. Besides, we analyzed the membrane transport efficiency of EV formation, which demonstrated the CC strategy could promote the formation of EV precursors and the release of EVs. In addition, miRNA analysis revealed that CC-EVs were enriched with anti-chronic inflammatory factors, which could inhibit the nuclear factor kappa-B (NF-κB) pathway, mitigate chronic inflammation, and effectively repair skin photo-aging damage.

15.
J Integr Med ; 21(6): 584-592, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37989697

RESUMEN

OBJECTIVE: To explore whether the ethanol extract of Herpetospermum caudigerum Wall (EHC), a Xizang medicinal plant traditionally used for treating liver diseases, can improve imiquimod-induced psoriasis-like skin inflammation. METHODS: Immunohistochemistry and immunofluorescence staining were used to determine the effects of topical EHC use in vivo on the skin pathology of imiquimod-induced psoriasis in mice. The protein levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-17A (IL-17A) in mouse skin samples were examined using immunohistochemical staining. In vitro, IFN-γ-induced HaCaT cells with or without EHC treatment were used to evaluate the expression of keratinocyte-derived intercellular cell adhesion molecule-1 (ICAM-1) and chemokine CXC ligand 9 (CXCL9) using Western blotting and reverse transcription-quantitative polymerase chain reaction. The protein synthesis inhibitor cycloheximide and proteasome inhibitor MG132 were utilized to validate the EHC-mediated mechanism underlying degradation of ICAM-1 and CXCL9. RESULTS: EHC improved inflammation in the imiquimod-induced psoriasis mouse model and reduced the levels of IFN-γ, TNF-α, and IL-17A in psoriatic lesions. Treatment with EHC also suppressed ICAM-1 and CXCL9 in epidermal keratinocytes. Further mechanistic studies revealed that EHC suppressed keratinocyte-derived ICAM-1 and CXCL9 by promoting ubiquitin-proteasome-mediated protein degradation rather than transcriptional repression. Seven primary compounds including ehletianol C, dehydrodiconiferyl alcohol, herpetrione, herpetin, herpetotriol, herpetetrone and herpetetrol were identified from the EHC using ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry. CONCLUSION: Topical application of EHC ameliorates psoriasis-like skin symptoms and improves the inflammation at the lesion sites. Please cite this article as: Zhong Y, Zhang BW, Li JT, Zeng X, Pei JX, Zhang YM, Yang YX, Li FL, Deng Y, Zhao Q. Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9. J Integr Med. 2023; 21(6): 584-592.


Asunto(s)
Interleucina-17 , Psoriasis , Animales , Ratones , Interleucina-17/efectos adversos , Interleucina-17/metabolismo , Molécula 1 de Adhesión Intercelular , Imiquimod/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Ligandos , Psoriasis/tratamiento farmacológico , Psoriasis/inducido químicamente , Queratinocitos , Inflamación/tratamiento farmacológico , Quimiocinas/efectos adversos , Quimiocinas/metabolismo , Interferón gamma/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
16.
J Org Chem ; 77(1): 57-67, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22118476

RESUMEN

A synthetic approach to a set of three inherently chiral [n]cyclophanes, [n](1,6)pyrenophanes (29a-c, n = 8-10) was investigated. Progress toward 29a was thwarted by the failure of the key dithiacyclophane-forming reaction. For the next higher homologue, the synthesis was completed, but the desired [9](1,6)pyrenophane (29b) could only be partially separated from an isomeric pyrenophane, [9](1,8)pyrenophane (28b), and an unidentified byproduct. Work aimed at the synthesis of the next higher homologue resulted in the isolation of a 7:4 mixture of [10](1,8)pyrenophane (28c) and [10](1,6)pyrenophane (29c), which could not be separated by column chromatography or crystallization. However, single-crystal X-ray structures of 28c and 29c were obtained after manual separation of two crystals with different morphologies from the same batch of crystals obtained from the 7:4 mixture of 28c and 29c. The pyrene system of 29c was found to have a gentle end-to-end bend as well as a significant longitudinal twist. Short intermolecular C(sp(3))-H···π contacts (2.64 to 2.76 Å) between H-atoms on the bridge and the centroids of three of the four six-membered rings of the pyrene system of a neighboring pyrenophane of like chirality give rise to the formation of single enantiomer columns. From a DNMR study of the mixture of 28c and 29c, the bridge in [10](1,8)pyrenophane (28c) was found to undergo a conformational flip from one side of the pyrene system to the other with ΔG(‡) = 14.9 ± 0.2 kcal/mol. A two-stage preparative HPLC protocol was subsequently developed for the separation of 28c and 29c (Chiralpak AD-H column) and then the enantiomers of 29c (Chiralcel OJ-H column). This enabled the measurement of their optical rotations and CD spectra.

17.
J Ethnopharmacol ; 292: 115124, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35183690

RESUMEN

ETHNO-PHARMACOLOGICAL RELEVANCE: Khasianine is recently identified as a bioactive compound from Solanum nigrum L. (SNL) which is a traditional Chinese herb (named LongKui in China) and has been clinically applied for treating psoriasis in China but with limited knowledge about the active ingredients. AIM OF THE STUDY: This study tried to explore the bioactivity of Khasianine and showed that Khasianine possessed highly anti-inflammatory bioactivity which rapidly alleviated psoriasis-like mice skin inflammation. MATERIALS AND METHODS: Imiquimod induced psoriasis-like mouse model, and human keratinocytes were employed in this study. In vivo, immunohistochemistry and immunofluorescence were performed to evaluate the pathological improvement in psoriatic lesions after Khasianine treatment. In vitro, tumor necrosis factor α (TNF-α) treated HaCaT cells with or without Khasianine, were used to analyze the expression and cellular location of NF-κB p65, the expression of IL-17A and IL-33, and the binding intensity of NF-κB p65 on the promoter of IL-17A and IL-33 to understand the molecular mechanism of Khasianine mediated anti-inflammatory effect. RESULTS: Khasianine reduced infiltration of CD4+ T helper cells (Th cells) and macrophages in mice psoriatic lesions. Immunohistochemistry analysis revealed that Khasianine reduced TNF-α levels in lesions and suppressed NF-κB p65 activation as well as expression of IL-17A and IL-33 in mice epidermal keratinocytes. Further studies in human keratinocytes demonstrated that Khasianine inhibited TNF-α-induced transcriptional activation (transactivation) of NF-κB p65 such as evicting NF-κB p65 binding from the promoter regions of IL-17A and IL-33 and preventing NF-κB nuclear translocation. CONCLUSIONS: Our results suggested that Khasianine is a potent anti-inflammatory compound with the bioactivity of NF-κB inhibition and is a promising candidate for psoriasis topical therapy.


Asunto(s)
Fitosteroles , Psoriasis , Alcaloides Solanáceos , Animales , Antiinflamatorios/uso terapéutico , Dermatitis/tratamiento farmacológico , Interleucina-17/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Fitosteroles/uso terapéutico , Psoriasis/tratamiento farmacológico , Piel , Alcaloides Solanáceos/uso terapéutico , Activación Transcripcional , Factor de Necrosis Tumoral alfa/metabolismo
18.
Int Immunopharmacol ; 112: 109270, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36179418

RESUMEN

Anti-inflammation medication is one of the most important treatment for people with atopic dermatitis (AD) which presents persistent type 2 inflammation in skin lesions. Interaction between activated keratinocytes and immune cells in AD skin lesions amplifies inflammatory signaling by augmenting production of cytokines, such as keratinocyte-derived thymic stromal lymphopoietin (TSLP) and interleukin-33 (IL-33). Phellopterin is a bioactive compound isolated from ethanol extract of Angelica dahurica root which has been traditionally used for AD therapy in China. In the present study, we showed that Phellopterin possessed anti-type 2 inflammation activity and alleviated AD-like phenotypes including reduction in serum immunoglobulin E (IgE) levels and infiltration of eosinophils and mast cells in the AD-like skin lesions. Further molecular analysis found that Phellopterin suppressed phosphorylation of signal transducer and activator of transcription 3 (STAT3) at Tyr705, and the expression of TSLP and IL-33 in epidermal keratinocytes of AD-like lesions. In vitro studies in cultured human keratinocytes demonstrated that STAT3 was required for interleukin-4 (IL-4)-induced overexpression of TSLP and IL-33. Phellopterin inhibited IL-4-induced activation of STAT3, which leaded to suppress the STAT3-mediated transcription of TSLP and IL-33. Our study suggested that Phellopterin is an active compound with bioactivities of anti- type 2 inflammation and STAT3 inactivation, thus allowing to be a promising candidate for AD topical therapy.


Asunto(s)
Dermatitis Atópica , Humanos , Interleucina-33/metabolismo , Interleucina-4/metabolismo , Factor de Transcripción STAT3/metabolismo , Queratinocitos , Citocinas/metabolismo , Inflamación/metabolismo , Inmunoglobulina E/metabolismo , Etanol/metabolismo
19.
Food Chem ; 368: 130610, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34419798

RESUMEN

Inflammation occurs when the immune system responses to external harmful stimuli and infection. Chronic inflammation induces various diseases. A variety of foods are prescribed in the traditional medicines of many countries all over the world, which gave birth to the concept of medicine food homology. Over the past few decades, a number of secondary metabolites from medicine food homology plants have been demonstrated to have anti-inflammatory effects. In the present review, the effects and mechanisms of the medicine food homology plants-derived active components on relieving inflammation and inflammation-mediated diseases were summarized and discussed. The information provided in this review is valuable to future studies on anti-inflammatory ingredients derived from medicine food homology plants as drugs or food supplements.


Asunto(s)
Medicina Tradicional , Plantas Comestibles , Antiinflamatorios/uso terapéutico , Alimentos , Inflamación/tratamiento farmacológico
20.
Regen Biomater ; 9: rbac023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529048

RESUMEN

Successful wound healing depends on the reconstruction of proper tissue homeostasis, particularly in the posttraumatic inflammatory tissue microenvironment. Diabetes jeopardizes tissues' immune homeostasis in cutaneous wounds, causing persistent chronic inflammation and cytokine dysfunction. Previously, we developed an autologous regeneration factor (ARF) technology to extract the cytokine composite from autologous tissue to restore immune homeostasis and promote wound healing. However, treatment efficacy was significantly compromised in diabetic conditions. Therefore, we proposed that a combination of melatonin and ARF, which is beneficial for proper immune homeostasis reconstruction, could be an effective treatment for diabetic wounds. Our research showed that the utilization of melatonin-mediated ARF biogel (AM gel) promoted diabetic wound regeneration at a more rapid healing rate. RNA-Seq analysis showed that AM gel treatment could restore more favorable immune tissue homeostasis with unique inflammatory patterning as a result of the diminished intensity of acute and chronic inflammation. Currently, AM gel could be a novel and promising therapeutic strategy for diabetic wounds in clinical practice through favorable immune homeostatic reconstructions in the tissue microenvironment and proper posttraumatic inflammation patterning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA