Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 48(11): 3400-3407, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33880604

RESUMEN

PURPOSE: The increased glucose metabolism of cancer cells is the basis for 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). However, due to its coarse image resolution, PET is unable to resolve the metabolic role of cancer-associated stroma, which often influences the metabolic reprogramming of a tumor. This study investigates the use of radioluminescence microscopy for imaging FDG uptake in engineered 3D tumor models with high resolution. METHOD: Multicellular tumor spheroids (A549 lung adenocarcinoma) were co-cultured with GFP-expressing human umbilical vein endothelial cells (HUVECs) within an artificial extracellular matrix to mimic a tumor and its surrounding stroma. The tumor model was constructed as a 200-µm-thin 3D layer over a transparent CdWO4 scintillator plate to allow high-resolution imaging of the cultured cells. After incubation with FDG, the radioluminescence signal was collected by a highly sensitive widefield microscope. Fluorescence microscopy was performed using the same instrument to localize endothelial and tumor cells. RESULTS: Simultaneous and co-localized brightfield, fluorescence, and radioluminescence imaging provided high-resolution information on the distribution of FDG in the engineered tissue. The microvascular stromal compartment as a whole took up a large fraction of the FDG, comparable to the uptake of the tumor spheroids. In vitro gamma counting confirmed that A549 and HUVEC cells were both highly glycolytic with rapid FDG uptake kinetics. Despite the relative thickness of the tissue constructs, an average spatial resolution of 64 ± 4 µm was achieved for imaging FDG. CONCLUSION: Our study demonstrates the feasibility of imaging the distribution of FDG uptake in engineered in vitro tumor models. With its high spatial resolution, the method can separately resolve tumor and stromal components. The approach could be extended to more advanced engineered cancer models but also to surgical tissue slices and tumor biopsies.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias Pulmonares , Células Endoteliales , Humanos , Microscopía , Tomografía de Emisión de Positrones , Radiofármacos
2.
Adv Funct Mater ; 28(20)2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29785178

RESUMEN

Critical considerations in engineering biomaterials for rotator cuff repair include bone-tendon-like mechanical properties to support physiological loading and biophysicochemical attributes that stabilize the repair site over the long-term. In this study, UV-crosslinkable polyurethane based on quadrol (Q), hexamethylene diisocyante (H), and methacrylic anhydride (M; QHM polymers), which are free of solvent, catalyst, and photoinitiator, is developed. Mechanical characterization studies demonstrate that QHM polymers possesses phototunable bone- and tendon-like tensile and compressive properties (12-74 MPa tensile strength, 0.6-2.7 GPa tensile modulus, 58-121 MPa compressive strength, and 1.5-3.0 GPa compressive modulus), including the capability to withstand 10 000 cycles of physiological tensile loading and reduce stress concentrations via stiffness gradients. Biophysicochemical studies demonstrate that QHM polymers have clinically favorable attributes vital to rotator cuff repair stability, including slow degradation profiles (5-30% mass loss after 8 weeks) with little-to-no cytotoxicity in vitro, exceptional suture retention ex vivo (2.79-3.56-fold less suture migration relative to a clinically available graft), and competent tensile properties (similar ultimate load but higher normalized tensile stiffness relative to a clinically available graft) as well as good biocompatibility for augmenting rat supraspinatus tendon repair in vivo. This work demonstrates functionally graded, bone-tendon-like biomaterials for interfacial tissue engineering.

3.
J Mater Res ; 33(14): 1948-1959, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30364693

RESUMEN

This work aims at providing guidance through systematic experimental characterization, for the design of 3D printed scaffolds for potential orthopaedic applications, focusing on fused deposition modeling (FDM) with a composite of clinically available polycaprolactone (PCL) and ß-tricalcium phosphate (ß-TCP). First, we studied the effect of the chemical composition (0% to 60% ß-TCP/PCL) on the scaffold's properties. We showed that surface roughness and contact angle were respectively proportional and inversely proportional to the amount of ß-TCP, and that degradation rate increased with the amount of ceramic. Biologically, the addition of ß-TCP enhanced proliferation and osteogenic differentiation of C3H10. Secondly, we systematically investigated the effect of the composition and the porosity on the 3D printed scaffold mechanical properties. Both an increasing amount of ß-TCP and a decreasing porosity augmented the apparent Young's modulus of the 3D printed scaffolds. Third, as a proof-of-concept, a novel multi-material biomimetic implant was designed and fabricated for potential disk replacement.

4.
Drug Chem Toxicol ; 39(4): 451-4, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26887920

RESUMEN

CONTEXT: Heparin-binding epidermal growth factor like growth factor (HB-EGF) is an emerging therapeutic for the regeneration of the tympanic membrane (TM). OBJECTIVE: Our aim was to determine whether the doses of HB-EGF delivered in a sustained release hydrogel into a middle ear mouse model, would be measurable in the systemic circulation. We also aimed to observe, in the scenario that the intended dose was absorbed directly into the circulation, whether these levels could be measured above the background levels of HB-EGF in the circulation. METHODS: A total of 12 mice had transtympanic injections of 5 µg/ml of HB-EGF contained within a previously described novel hydrogel vehicle, while another 12 mice had intravenous delivery of 10 µg/kg of HB-EGF. Intravenous blood samples were collected at 0-, 3-, 24-, 168-, 288- and 720-h post-injection. A double-antibody sandwich one-step process enzyme-linked immunosorbent assay (ELISA) was used to determine the level of HB-EGF in the serum. RESULTS: No mice in the transtympanic administration group and no mice in the intravenous administration group were found to have blood level measured above that in the controls. DISCUSSION: The inability of the positive control to measure levels above background, suggest the total dose used in our studies, even if 100% absorbed into the system circulation is insignificant. CONCLUSIONS: HB-EGF at the doses and delivery method proposed for treatment of chronic TM perforation in a mouse model are likely to have no measurable systemic effect.


Asunto(s)
Factor de Crecimiento Similar a EGF de Unión a Heparina/administración & dosificación , Factor de Crecimiento Similar a EGF de Unión a Heparina/sangre , Membrana Timpánica/efectos de los fármacos , Animales , Portadores de Fármacos/química , Ensayo de Inmunoadsorción Enzimática , Hidrogeles/química , Inyección Intratimpánica , Inyecciones Intravenosas , Masculino , Ratones Endogámicos CBA , Distribución Tisular
5.
Artículo en Inglés | MEDLINE | ID: mdl-38411502

RESUMEN

Rotator cuff tear (RCT) is the most common cause of disability in the upper extremity. It results in 4.5 million physician visits in the United States every year and is the most common etiology of shoulder conditions evaluated by orthopedic surgeons. Over 460,000 RCT repair surgeries are performed in the United States annually. Rotator cuff (RC) retear and failure to heal remain significant postoperative complications. Literature suggests that the retear rates can range from 29.5% to as high as 94%. Weakened and irregular enthesis regeneration is a crucial factor in postsurgical failure. Although commercially available RC repair grafts have been introduced to augment RC enthesis repair, they have been associated with mixed clinical outcomes. These grafts lack appropriate biological cues such as stem cells and signaling molecules at the bone-tendon interface. In addition, they do little to prevent fibrovascular scar tissue formation, which causes the RC to be susceptible to retear. Advances in tissue engineering have demonstrated that mesenchymal stem cells (MSCs) and growth factors (GFs) enhance RC enthesis regeneration in animal models. These models show that delivering MSCs and GFs to the site of RCT enhances native enthesis repair and leads to greater mechanical strength. In addition, these models demonstrate that MSCs and GFs may be delivered through a variety of methods including direct injection, saturation of repair materials, and loaded microspheres. Grafts that incorporate MSCs and GFs enhance anti-inflammation, osteogenesis, angiogenesis, and chondrogenesis in the RC repair process. It is crucial that the techniques that have shown success in animal models are incorporated into the clinical setting. A gap currently exists between the promising biological factors that have been investigated in animal models and the RC repair grafts that can be used in the clinical setting. Future RC repair grafts must allow for stable implantation and fixation, be compatible with current arthroscopic techniques, and have the capability to deliver MSCs and/or GFs.

6.
J Biomed Mater Res B Appl Biomater ; 112(1): e35360, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38247252

RESUMEN

Nontraumatic osteonecrosis of the femoral head (ONFH) is a refractory condition that commonly results in femoral head collapse and degenerative arthritis of the hip. In the early stages, surgical procedures for hip preservation, including core decompression (CD), have been developed to prevent progressive collapse of the femoral head. Optimization of bone regeneration and biological augmentation may further enhance the therapeutic efficacy of CD for ONFH. Thus, combining CD with cell-based therapy has recently been proposed. In fact, patients treated with cell-based therapy using autologous bone marrow concentrate demonstrate improved survivorship of the femoral head, compared with conventional CD alone. Preclinical research studies to investigate adjunctive therapies for CD often utilize the rabbit model of corticosteroid-induced ONFH. Mesenchymal stem cells (MSCs) are known to promote osteogenesis and angiogenesis, and decrease inflammation in bone. Local drug delivery systems have the potential to achieve targeted therapeutic effects by precisely controlling the drug release rate. Scaffolds can provide an osteoconductive structural framework to facilitate the repair of osteonecrotic bone tissue. We focused on the combination of both cell-based and scaffold-based therapies for bone tissue regeneration in ONFH. We hypothesized that combining CD and osteoconductive scaffolds would provide mechanical strength and structural cell guidance; and that combining CD and genetically modified (GM) MSCs to express relevant cytokines, chemokines, and growth factors would promote bone tissue repair. We developed GM MSCs that overexpress the anti-inflammatory, pro-reconstructive cytokines platelet-derived growth factor-BB to provide MSCs with additional benefits and investigated the efficacy of combinations of these GM MSCs and scaffolds for treatment of ONFH in skeletally mature male New Zealand white rabbits. In the future, the long-term safety, efficacy, durability, and cost-effectiveness of these and other biological and mechanical treatments must be demonstrated for the patients affected by ONFH.


Asunto(s)
Cabeza Femoral , Procedimientos Ortopédicos , Humanos , Animales , Masculino , Conejos , Corticoesteroides , Regeneración Ósea , Citocinas
7.
J Mater Sci Mater Med ; 24(8): 1895-903, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23779152

RESUMEN

This study evaluated whether the combination of biodegradable ß-tricalcium phosphate (ß-TCP) scaffolds with recombinant human bone morphogenetic protein-2 (rhBMP-2) or platelet-rich plasma (PRP) could accelerate bone formation and increase bone height using a rabbit non-through cranial bone defect model. Four non-through cylindrical bone defects with a diameter of 8-mm were surgically created on the cranium of rabbits. ß-TCP scaffolds in the presence and absence of impregnated rhBMP-2 or PRP were placed into the defects. At 8 and 16 weeks after implantation, samples were dissected and fixed for analysis by microcomputed tomography and histology. Only defects with rhBMP-2 impregnated ß-TCP scaffolds showed significantly enhanced bone formation compared to non-impregnated ß-TCP scaffolds (P < 0.05). Although new bone was higher than adjacent bone at 8 weeks after implantation, vertical bone augmentation was not observed at 16 weeks after implantation, probably due to scaffold resorption occurring concurrently with new bone formation.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Fosfatos de Calcio/química , Sistemas de Liberación de Medicamentos/métodos , Osteogénesis/efectos de los fármacos , Plasma Rico en Plaquetas , Cráneo/lesiones , Andamios del Tejido/química , Implantes Absorbibles , Animales , Proteína Morfogenética Ósea 2/administración & dosificación , Regeneración Ósea/efectos de los fármacos , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/instrumentación , Humanos , Masculino , Modelos Animales , Plasma Rico en Plaquetas/fisiología , Conejos , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología , Cráneo/patología , Fracturas Craneales/fisiopatología , Fracturas Craneales/terapia
8.
Int J Bioprint ; 9(4): 705, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323480

RESUMEN

Bioink preparation is an important yet challenging step for bioprinting with hydrogels, as it involves fast and homogeneous mixing of various viscous components. In this study, we have developed an automated active mixing platform (AAMP), which allows for high-quality preparation of hydrogel bioinks. The design of AAMP, adapted from syringe pumps, provides many advantages, including low cost, automated control, high precision, customizability, and great cytocompatibility, as well as the potential to intelligently detect the homogeneity. To demonstrate the capability of AAMP, mixing of different hydrogel components, including alginate and xanthan gum with and without Ca2+, alginate and Laponite, PEGDMA and xanthan gum, was performed to investigate an alginate hydrogel preparation process. Colorimetric analyses were carried out to evaluate the mixing outcome with AAMP. Result showed that AAMP can prepare homogeneous hydrogel mixing in a fast and automated fashion. A multiphysics COMSOL simulation is carried out to further validate the results. Moreover, cell viability and proliferation study were performed in a cell encapsulation mixing experiment to validate the cytocompatibility of the AAMP. The AAMP has demonstrated great capability in hydrogel bioink preparation and could therefore holds great promise and wide applications in bioprinting and tissue engineering.

9.
Bioact Mater ; 19: 167-178, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35510174

RESUMEN

Conventional synthetic vascular grafts are associated with significant failure rates due to their mismatched mechanical properties with the native vessel and poor regenerative potential. Though different tissue engineering approaches have been used to improve the biocompatibility of synthetic vascular grafts, it is still crucial to develop a new generation of synthetic grafts that can match the dynamics of native vessel and direct the host response to achieve robust vascular regeneration. The size of pores within implanted biomaterials has shown significant effects on macrophage polarization, which has been further confirmed as necessary for efficient vascular formation and remodeling. Here, we developed biodegradable, autoclavable synthetic vascular grafts from a new polyurethane elastomer and tailored the grafts' interconnected pore sizes to promote macrophage populations with a pro-regenerative phenotype and improve vascular regeneration and patency rate. The synthetic vascular grafts showed similar mechanical properties to native blood vessels, encouraged macrophage populations with varying M2 to M1 phenotypic expression, and maintained patency and vascular regeneration in a one-month rat carotid interposition model and in a four-month rat aortic interposition model. This innovative bioactive synthetic vascular graft holds promise to treat clinical vascular diseases.

10.
Biomaterials ; 293: 121969, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36566553

RESUMEN

Gelatin methacryloyl (GelMA)/alginate-based hydrogels have shown great promise in bioprinting, but their printability is limited at room temperature. In this paper, we present our development of a room temperature printable hydrogel bioink by introducing polyethylene glycol dimethacrylate (PEGDMA) and xanthan gum into the GelMA/alginate system. The inclusion of PEGDMA facilitates tuning of the hydrogel's mechanical property, while xanthan gum improves the viscosity of the hydrogel system and allows easy extrusion at room temperature. To fine-tune the mechanical and degradation properties, methacrylated xanthan gum was synthesized and chemically crosslinked to the system. We systematically characterized this hydrogel with attention to printability, strut size, mechanical property, degradation and cytocompatibility, and achieved a broad range of compression modulus (∼10-100 kPa) and degradation profile (100% degradation by 24 h-40% by 2 weeks). Moreover, xanthan gum demonstrated solubility in ionic solutions such as cell culture medium, which is essential for biocompatibility. Live/dead staining showed that cell viability in the printed hydrogels was over 90% for 7 days. Metabolic activity analysis demonstrated excellent cell proliferation and survival within 4 weeks of incubation. In summary, the newly developed hydrogel system has demonstrated distinct features including extrusion printability, widely tunable mechanical property and degradation, ionic solubility, and cytocompatibility. It offers great flexibility in bioprinting and tissue engineering.


Asunto(s)
Bioimpresión , Andamios del Tejido , Andamios del Tejido/química , Alginatos/química , Ingeniería de Tejidos , Hidrogeles/química , Gelatina/química , Impresión Tridimensional
11.
Nat Commun ; 14(1): 4455, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488113

RESUMEN

Bone transport is a surgery-driven procedure for the treatment of large bone defects. However, challenging complications include prolonged consolidation, docking site nonunion and pin tract infection. Here, we develop an osteoinductive and biodegradable intramedullary implant by a hybrid tissue engineering construct technique to enable sustained delivery of bone morphogenetic protein-2 as an adjunctive therapy. In a male rat bone transport model, the eluting bone morphogenetic protein-2 from the implants accelerates bone formation and remodeling, leading to early bony fusion as shown by imaging, mechanical testing, histological analysis, and microarray assays. Moreover, no pin tract infection but tight osseointegration are observed. In contrast, conventional treatments show higher proportion of docking site nonunion and pin tract infection. The findings of this study demonstrate that the novel intramedullary implant holds great promise for advancing bone transport techniques by promoting bone regeneration and reducing complications in the treatment of bone defects.


Asunto(s)
Implantes Absorbibles , Osteogénesis , Masculino , Animales , Ratas , Bioensayo , Regeneración Ósea , Oseointegración
12.
J Biomed Mater Res A ; 111(8): 1120-1134, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36606330

RESUMEN

Core decompression (CD) with mesenchymal stromal cells (MSCs) is an effective therapy for early-stage osteonecrosis of the femoral head (ONFH). Preconditioning of MSCs, using inflammatory mediators, is widely used in immunology and various cell therapies. We developed a three-dimensional printed functionally graded scaffold (FGS), made of ß-TCP and PCL, for cell delivery at a specific location. The present study examined the efficacy of CD treatments with genetically modified (GM) MSCs over-expressing PDGF-BB (PDGF-MSCs) or GM MSCs co-over-expressing IL-4 and PDGF-BB and preconditioned for three days of exposure to lipopolysaccharide and tumor necrosis factor-alpha (IL-4-PDGF-pMSCs) using the FGS for treating steroid-induced ONFH in rabbits. We compared CD without cell-therapy, with IL-4-PDGF-pMSCs alone, and with FGS loaded with PDGF-MSCs or IL-4-PDGF-pMSCs. For the area inside the CD, the bone volume in the CD alone was higher than in both FGS groups. The IL-4-PDGF-pMSCs alone and FGS + PDGF-MSCs reduced the occurrence of empty lacunae and improved osteoclastogenesis. There was no significant difference in angiogenesis among the four groups. The combined effect of GM MSCs or pMSCs and the FGS was not superior to the effect of each alone. To establish an important adjunctive therapy for CD for early ONFH in the future, it is necessary and essential to develop an FGS that delivers biologics appropriately and provides structural and mechanical support.


Asunto(s)
Células Madre Mesenquimatosas , Osteonecrosis , Animales , Conejos , Cabeza Femoral/patología , Cabeza Femoral/cirugía , Becaplermina , Interleucina-4/farmacología , Regeneración Ósea , Células Madre Mesenquimatosas/patología , Corticoesteroides/farmacología , Osteonecrosis/inducido químicamente , Osteonecrosis/terapia , Osteonecrosis/patología
13.
Stem Cell Res Ther ; 14(1): 99, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085909

RESUMEN

BACKGROUND: Continuous cross talk between MSCs and macrophages is integral to acute and chronic inflammation resulting from contaminated polyethylene particles (cPE); however, the effect of this inflammatory microenvironment on mitochondrial metabolism has not been fully elucidated. We hypothesized that (a) exposure to cPE leads to impaired mitochondrial metabolism and glycolytic reprogramming and (b) macrophages play a key role in this pathway. METHODS: We cultured MSCs with/without uncommitted M0 macrophages, with/without cPE in 3-dimensional gelatin methacrylate (3D GelMA) constructs/scaffolds. We evaluated mitochondrial function (membrane potential and reactive oxygen species-ROS production), metabolic pathways for adenosine triphosphate (ATP) production (glycolysis or oxidative phosphorylation) and response to stress mechanisms. We also studied macrophage polarization toward the pro-inflammatory M1 or the anti-inflammatory M2 phenotype and the osteogenic differentiation of MSCs. RESULTS: Exposure to cPE impaired mitochondrial metabolism of MSCs; addition of M0 macrophages restored healthy mitochondrial function. Macrophages exposed to cPE-induced glycolytic reprogramming, but also initiated a response to this stress to restore mitochondrial biogenesis and homeostatic oxidative phosphorylation. Uncommitted M0 macrophages in coculture with MSC polarized to both M1 and M2 phenotypes. Osteogenesis was comparable among groups after 21 days. CONCLUSION: This work confirmed that cPE exposure triggers impaired mitochondrial metabolism and glycolytic reprogramming in a 3D coculture model of MSCs and macrophages and demonstrated that macrophages cocultured with MSCs undergo metabolic changes to maintain energy production and restore homeostatic metabolism.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Polietileno/metabolismo , Polietileno/farmacología , Macrófagos/metabolismo , Metaboloma , Células Madre Mesenquimatosas/metabolismo
14.
Stem Cells Transl Med ; 11(11): 1165-1176, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36222619

RESUMEN

Heterotopic ossification (HO) is a dynamic, complex pathologic process that often occurs after severe polytrauma trauma, resulting in an abnormal mesenchymal stem cell differentiation leading to ectopic bone growth in soft-tissues including tendons, ligaments, and muscles. The abnormal bone structure and location induce pain and loss of mobility. Recently, we observed that NGF (Nerve growth factor)-responsive TrkA (Tropomyosin receptor kinase A)-expressing nerves invade sites of soft-tissue trauma, and this is a necessary feature for heterotopic bone formation at sites of injury. Here, we assayed the effects of the partial TrkA agonist Gambogic amide (GA) in peritendinous heterotopic bone after extremity trauma. Mice underwent HO induction using the burn/tenotomy model with or without systemic treatment with GA, followed by an examination of the injury site via radiographic imaging, histology, and immunohistochemistry. Single-cell RNA Sequencing confirmed an increase in neurotrophin signaling activity after HO-inducing extremity trauma. Next, TrkA agonism led to injury site hyper-innervation, more brisk expression of cartilage antigens within the injured tendon, and a shift from FGF to TGFß signaling activity among injury site cells. Nine weeks after injury, this culminated in higher overall levels of heterotopic bone among GA-treated animals. In summary, these studies further link injury site hyper-innervation with increased vascular ingrowth and ultimately heterotopic bone after trauma. In the future, modulation of TrkA signaling may represent a potent means to prevent the trauma-induced heterotopic bone formation and improve tissue regeneration.


Asunto(s)
Quemaduras , Osificación Heterotópica , Ratones , Animales , Modelos Animales de Enfermedad , Osificación Heterotópica/patología , Tenotomía , Neuronas/patología , Osteogénesis
15.
Tissue Eng Part A ; 28(17-18): 760-769, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35357948

RESUMEN

Critical-sized cranial bone defect remains a great clinical challenge. With advantages in regenerative medicine, injectable hydrogels incorporated with bioactive molecules show great potential in promoting cranial bone repair. Recently, we developed a dual delivery system by sequential release of bone morphogenetic protein 2 (BMP2) followed by insulin-like growth factor 1 (IGF1) in microparticles (MPs), and an injectable alginate/collagen (alg/col)-based hydrogel. In this study, we aim to evaluate the effect of dual delivery of BMP2 and IGF1 in MPs through the injectable hydrogel in critical-sized cranial bone defect healing. The gelatin MPs loaded with BMP2 and poly(lactic-co-glycolic acid)-poly(ethylene glycol)-carboxyl (PLGA-PEG-COOH) MPs loaded with IGF1 were prepared, respectively. The encapsulation efficiency and release profile of growth factors in MPs were measured. A cranial defect model was applied to evaluate the efficacy of the dual delivery system in bone regeneration. Adult Sprague Dawley rats were subjected to osteotomy to make an ⌀8-mm cranial defect. The injectable hydrogel containing MPs loaded with BMP2 (2 µg), IGF1 (2 µg), or a combination of BMP2 (1 µg) and IGF1 (1 µg) were injected to the defect site. New bone formation was evaluated by microcomputed tomography, histological analysis, and immunohistochemistry after 4 or 8 weeks. Data showed that dual delivery of the low-dose BMP2 and IGF1 in MPs through alg/col-based hydrogel successfully restored cranial bone as early as 4 weeks after implantation, whose effect was comparable to the single delivery of high-dose BMP2 in MPs. In conclusion, this study suggests that dual delivery of BMP2 and IGF1 in MPs in alg/col-based hydrogel achieves early bone regeneration in critical-sized bone defect, with advantage in reducing the dose of BMP2. Impact Statement Sequential release of bone morphogenetic protein 2 (BMP2) followed by insulin-like growth factor 1 (IGF1) in two different microparticles promotes critical-sized bone defect healing. This dual delivery system reduces the dose of BMP2 by supplementing IGF1, which may diminish the potential side effects of BMP2.


Asunto(s)
Proteína Morfogenética Ósea 2 , Hidrogeles , Alginatos/farmacología , Animales , Proteína Morfogenética Ósea 2/farmacología , Regeneración Ósea , Hidrogeles/química , Hidrogeles/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Ratas , Ratas Sprague-Dawley , Cráneo/patología , Microtomografía por Rayos X
16.
iScience ; 25(5): 104229, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35494239

RESUMEN

This review presents bioprinting methods, biomaterials, and printing strategies that may be used for composite tissue constructs for musculoskeletal applications. The printing methods discussed include those that are suitable for acellular and cellular components, and the biomaterials include soft and rigid components that are suitable for soft and/or hard tissues. We also present strategies that focus on the integration of cell-laden soft and acellular rigid components under a single printing platform. Given the structural and functional complexity of native musculoskeletal tissue, we envision that hybrid bioprinting, referred to as hybprinting, could provide unprecedented potential by combining different materials and bioprinting techniques to engineer and assemble modular tissues.

17.
Injury ; 53(4): 1368-1374, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35078617

RESUMEN

OBJECTIVES: High energy long bone fractures with critical bone loss are at risk for nonunion without strategic intervention. We hypothesize that a synthetic membrane implanted at a single stage improves bone healing in a preclinical nonunion model. METHODS: Using standard laboratory techniques, microspheres encapsulating bone morphogenic protein-2 (BMP2) or platelet derived growth factor (PDGF) were designed and coupled to a type 1 collagen sheet. Critical femoral defects were created in rats and stabilized by locked retrograde intramedullary nailing. The negative control group had an empty defect. The induced membrane group (positive control) had a polymethylmethacrylate spacer inserted into the defect for four weeks and replaced with a bare polycaprolactone/beta-tricalcium phosphate (PCL/ß-TCP) scaffold at a second stage. For the experimental groups, a bioactive synthetic membrane embedded with BMP2, PDGF or both enveloped a PCL/ß-TCP scaffold was implanted in a single stage. Serial radiographs were taken at 1, 4, 8, and 12 weeks postoperatively from the definitive procedure and evaluated by two blinded observers using a previously described scoring system to judge union as primary outcome. RESULTS: All experimental groups demonstrated better union than the negative control (p = 0.01). The groups with BMP2 incorporated into the membrane demonstrated higher average union scores than the other groups (p = 0.01). The induced membrane group performed similarly to the PDGF group. Complete union was only demonstrated in groups with BMP2-eluting membranes. CONCLUSIONS: A synthetic membrane comprised of type 1 collagen embedded with controlled release BMP2 improved union of critical bone defects in a preclinical nonunion model.


Asunto(s)
Fosfatos de Calcio , Fijación Intramedular de Fracturas , Animales , Fosfatos de Calcio/farmacología , Fémur , Humanos , Polimetil Metacrilato , Ratas
18.
Acta Biomater ; 154: 108-122, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36272687

RESUMEN

Biological and mechanical cues are both vital for biomaterial aided tendon repair and regeneration. Here, we fabricated mechanically tendon-like (0 s UV) QHM polyurethane scaffolds (Q: Quadrol, H: Hexamethylene diisocyanate; M: Methacrylic anhydride) and immobilized them with Growth and differentiation factor-7 (GDF-7) to produce mechanically strong and tenogenic scaffolds. In this study, we assessed QHM polymer cytocompatibility, amenability to fibrin-coating, immobilization and persistence of GDF-7, and capability to support GDF-7-mediated tendon differentiation in vitro as well as in vivo in mouse subcutaneous and acute rat rotator cuff tendon resection models. Cytocompatibility studies showed that QHM facilitated cell attachment, proliferation, and viability. Fibrin-coating and GDF-7 retention studies showed that mechanically tendon-like 0 s UV QHM polymer could be immobilized with GDF-7 and retained the growth factor (GF) for at least 1-week ex vivo. In vitro differentiation studies showed that GDF-7 mediated bone marrow-derived human mesenchymal stem cell (hMSC) tendon-like differentiation on 0 s UV QHM. Subcutaneous implantation of GDF-7-immobilized, fibrin-coated, QHM polymer in mice for 2 weeks demonstrated de novo formation of tendon-like tissue while implantation of GDF-7-immobilized, fibrin-coated, QHM polymer in a rat acute rotator cuff resection injury model indicated tendon-like tissue formation in situ and the absence of heterotopic ossification. Together, our work demonstrates a promising synthetic scaffold with human tendon-like biomechanical attributes as well as immobilized tenogenic GDF-7 for tendon repair and regeneration. STATEMENT OF SIGNIFICANCE: Biological activity and mechanical robustness are key features required for tendon-promoting biomaterials. While synthetic biomaterials can be mechanically robust, they often lack bioactivity. To biologically augment synthetic biomaterials, numerous drug and GF delivery strategies exist but the large tissue space within the shoulder is constantly flushed with saline during arthroscopic surgery, hindering efficacious controlled release of therapeutic molecules. Here, we coated QHM polymer (which exhibits human tendon-to-bone-like biomechanical attributes) with fibrin for GF binding. Unlike conventional drug delivery strategies, our approach utilizes immobilized GFs as opposed to released GFs for sustained, localized tissue regeneration. Our data demonstrated that GF immobilization can be broadly applied to synthetic biomaterials for enhancing bioactivity, and GDF-7-immobilized QHM exhibit high clinical translational potential for tendon repair.


Asunto(s)
Polímeros , Lesiones del Manguito de los Rotadores , Ratas , Ratones , Humanos , Animales , Poliuretanos/farmacología , Anhídridos , Tendones , Diferenciación Celular , Materiales Biocompatibles , Lesiones del Manguito de los Rotadores/cirugía , Andamios del Tejido/química
19.
Tissue Eng Part B Rev ; 27(6): 539-547, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33138705

RESUMEN

A variety of engineered materials have gained acceptance in orthopedic practice as substitutes for autologous bone grafts, although the regenerative efficacy of these engineered grafts is still limited compared with that of transplanted native tissues. For bone defects greater than 4-5 cm, however, common bone grafting procedures are insufficient and more complicated surgical interventions are required to repair and regenerate the damaged or missing bone. In this review, we describe current grafting materials and surgical techniques for the reconstruction of large bone defects, followed by tissue engineering (TE) efforts to develop improved therapies. Particular emphasis is placed on graft vascularization, because for both autologous bone and engineered alternatives, achieving adequate vascular development within the regenerating bone tissues remains a significant challenge in the context of large bone defects. To this end, TE and surgical strategies to induce development of a vasculature within bone grafts are discussed. Impact statement This review aims to present an accessible and thorough overview of current orthopedic surgical techniques as well as bone tissue engineering and vascularization strategies that might one day offer improvements to clinical therapies for the repair of large bone defects. We consider the lessons that clinical orthopedic reconstructive practices can contribute to the push toward engineered bone.


Asunto(s)
Huesos , Ingeniería de Tejidos , Trasplante Óseo , Humanos , Ingeniería de Tejidos/métodos
20.
Materialia (Oxf) ; 152021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33367226

RESUMEN

Here we report development of in-situ stable injectable hydrogels for delivery of cells and growth factors based on two precursors, alginate, and collagen/calcium sulfate (CaSO4). The alg/col hydrogels were shear-thinning, injectable through commercially available needles and stable right after injection. Rheological measurements revealed that pre-crosslinked alg/col hydrogels fully crosslinked at 37°C and that the storage modulus of alg/col hydrogels increased with increasing the collagen content or the concentration of CaSO4. The viscoelastic characteristics and injectability of the alg/col hydrogels were not significantly impacted by the storage of precursor solutions for 28 days. An osteoinductive bone morphogenic protein-2 (BMP-2) loaded into alg/col hydrogels was released in 14 days. Human mesenchymal stem cells (hMSCs) encapsulated in alg/col hydrogels had over 90% viability over 7 days after injection. The DNA content of hMSC-laden alg/col hydrogels increased by 6-37 folds for 28 days, depending on the initial cell density. In addition, hMSCs encapsulated in alg/col hydrogels and incubated in osteogenic medium were osteogenically differentiated and formed a mineralized matrix. Finally, a BMP-2 loaded alg/col hydrogel was used to heal a critical size calvarial bone defect in rats after 8 weeks of injection. The alg/col hydrogel holds great promise in tissue engineering and bioprinting applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA