Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38875095

RESUMEN

Point cloud processing methods exploit local point features and global context through aggregation which does not explicitly model the internal correlations between local and global features. To address this problem, we propose full point encoding which is applicable to convolution and transformer architectures. Specifically, we propose full point convolution (FuPConv) and full point transformer (FPTransformer) architectures. The key idea is to adaptively learn the weights from local and global geometric connections, where the connections are established through local and global correlation functions, respectively. FuPConv and FPTransformer simultaneously model the local and global geometric relationships as well as their internal correlations, demonstrating strong generalization ability and high performance. FuPConv is incorporated in classical hierarchical network architectures to achieve local and global shape-aware learning. In FPTransformer, we introduce full point position encoding in self-attention, that hierarchically encodes each point position in the global and local receptive field. We also propose a shape-aware downsampling block that takes into account the local shape and the global context. Experimental comparison to existing methods on benchmark datasets shows the efficacy of FuPConv and FPTransformer for semantic segmentation, object detection, classification, and normal estimation tasks. In particular, we achieve state-of-the-art semantic segmentation results of 76.8% mIoU on S3DIS sixfold and 73.1% on S3DIS Area 5. Our code is available at https://github.com/hnuhyuwa/FullPointTransformer.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35544492

RESUMEN

Although deep learning has achieved great success in many computer vision tasks, its performance relies on the availability of large datasets with densely annotated samples. Such datasets are difficult and expensive to obtain. In this article, we focus on the problem of learning representation from unlabeled data for semantic segmentation. Inspired by two patch-based methods, we develop a novel self-supervised learning framework by formulating the jigsaw puzzle problem as a patch-wise classification problem and solving it with a fully convolutional network. By learning to solve a jigsaw puzzle comprising 25 patches and transferring the learned features to semantic segmentation task, we achieve a 5.8% point improvement on the Cityscapes dataset over the baseline model initialized from random values. It is noted that we use only about 1/6 training images of Cityscapes in our experiment, which is designed to imitate the real cases where fully annotated images are usually limited to a small number. We also show that our self-supervised learning method can be applied to different datasets and models. In particular, we achieved competitive performance with the state-of-the-art methods on the PASCAL VOC2012 dataset using significantly fewer time costs on pretraining.

3.
IEEE Trans Image Process ; 31: 1433-1446, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34951846

RESUMEN

Indirect methods for visual SLAM are gaining popularity due to their robustness to environmental variations. ORB-SLAM2 (Mur-Artal and Tardós, 2017) is a benchmark method in this domain, however, it consumes significant time for computing descriptors that never get reused unless a frame is selected as a keyframe. To overcome these problems, we present FastORB-SLAM which is light-weight and efficient as it tracks keypoints between adjacent frames without computing descriptors. To achieve this, a two stage descriptor-independent keypoint matching method is proposed based on sparse optical flow. In the first stage, we predict initial keypoint correspondences via a simple but effective motion model and then robustly establish the correspondences via pyramid-based sparse optical flow tracking. In the second stage, we leverage the constraints of the motion smoothness and epipolar geometry to refine the correspondences. In particular, our method computes descriptors only for keyframes. We test FastORB-SLAM on TUM and ICL-NUIM RGB-D datasets and compare its accuracy and efficiency to nine existing RGB-D SLAM methods. Qualitative and quantitative results show that our method achieves state-of-the-art accuracy and is about twice as fast as the ORB-SLAM2.

4.
Electronics (Basel) ; 10(13)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34552763

RESUMEN

It is well known that many chronic diseases are associated with unhealthy diet. Although improving diet is critical, adopting a healthy diet is difficult despite its benefits being well understood. Technology is needed to allow an assessment of dietary intake accurately and easily in real-world settings so that effective intervention to manage being overweight, obesity, and related chronic diseases can be developed. In recent years, new wearable imaging and computational technologies have emerged. These technologies are capable of performing objective and passive dietary assessments with a much simplified procedure than traditional questionnaires. However, a critical task is required to estimate the portion size (in this case, the food volume) from a digital image. Currently, this task is very challenging because the volumetric information in the two-dimensional images is incomplete, and the estimation involves a great deal of imagination, beyond the capacity of the traditional image processing algorithms. In this work, we present a novel Artificial Intelligent (AI) system to mimic the thinking of dietitians who use a set of common objects as gauges (e.g., a teaspoon, a golf ball, a cup, and so on) to estimate the portion size. Specifically, our human-mimetic system "mentally" gauges the volume of food using a set of internal reference volumes that have been learned previously. At the output, our system produces a vector of probabilities of the food with respect to the internal reference volumes. The estimation is then completed by an "intelligent guess", implemented by an inner product between the probability vector and the reference volume vector. Our experiments using both virtual and real food datasets have shown accurate volume estimation results.

5.
Artículo en Inglés | MEDLINE | ID: mdl-32191886

RESUMEN

Semantic segmentation is a key step in scene understanding for autonomous driving. Although deep learning has significantly improved the segmentation accuracy, current highquality models such as PSPNet and DeepLabV3 are inefficient given their complex architectures and reliance on multi-scale inputs. Thus, it is difficult to apply them to real-time or practical applications. On the other hand, existing real-time methods cannot yet produce satisfactory results on small objects such as traffic lights, which are imperative to safe autonomous driving. In this paper, we improve the performance of real-time semantic segmentation from two perspectives, methodology and data. Specifically, we propose a real-time segmentation model coined Narrow Deep Network (NDNet) and build a synthetic dataset by inserting additional small objects into the training images. The proposed method achieves 65.7% mean intersection over union (mIoU) on the Cityscapes test set with only 8.4G floatingpoint operations (FLOPs) on 1024×2048 inputs. Furthermore, by re-training the existing PSPNet and DeepLabV3 models on our synthetic dataset, we obtained an average 2% mIoU improvement on small objects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA