Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 514: 78-86, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38880275

RESUMEN

The second heart field (SHF) plays a pivotal role in heart development, particularly in outflow tract (OFT) morphogenesis and septation, as well as in the expansion of the right ventricle (RV). Two mouse Cre lines, the Mef2c-AHF-Cre (Mef2c-Cre) and Isl1-Cre, have been widely used to study the SHF development. However, Cre activity is triggered not only in the SHF but also in the RV in the Mef2c-Cre mice, and in the Isl1-Cre mice, Cre activation is not SHF-specific. Therefore, a more suitable SHF-Cre line is desirable for better understanding SHF development. Here, we generated and characterized the Prdm1-Cre knock-in mice. In comparison with Mef2c-Cre mice, the Cre activity is similar in the pharyngeal and splanchnic mesoderm, and in the OFT of the Prdm1-Cre mice. Nonetheless, it was noticed that Cre expression is largely reduced in the RV of Prdm1-Cre mice compared to the Mef2c-Cre mice. Furthermore, we deleted Hand2, Nkx2-5, Pdk1 and Tbx20 using both Mef2c-Cre and Prdm1-Cre mice to study OFT morphogenesis and septation, making a comparison between these two Cre lines. New insights were obtained in understanding SHF development including differentiation into cardiomyocytes in the OFT using Prdm1-Cre mice. In conclusion, we found that Prdm1-Cre mouse line is a more appropriate tool to monitor SHF development, while the Mef2c-Cre mice are excellent in studying the role and function of the SHF in OFT morphogenesis and septation.


Asunto(s)
Corazón , Integrasas , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Animales , Ratones , Corazón/embriología , Integrasas/metabolismo , Integrasas/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones Transgénicos , Regulación del Desarrollo de la Expresión Génica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas de Sustitución del Gen
2.
Theor Appl Genet ; 137(6): 126, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727833

RESUMEN

KEY MESSAGE: The gene controlling pink flesh in watermelon was finely mapped to a 55.26-kb region on chromosome 6. The prime candidate gene, Cla97C06G122120 (ClPPR5), was identified through forward genetics. Carotenoids offer numerous health benefits; while, they cannot be synthesized by the human body. Watermelon stands out as one of the richest sources of carotenoids. In this study, genetic generations derived from parental lines W15-059 (red flesh) and JQ13-3 (pink flesh) revealed the presence of the recessive gene Clpf responsible for the pink flesh (pf) trait in watermelon. Comparative analysis of pigment components and microstructure indicated that the disparity in flesh color between the parental lines primarily stemmed from variations in lycopene content, as well as differences in chromoplast number and size. Subsequent bulk segregant analysis (BSA-seq) and genetic mapping successfully narrowed down the Clpf locus to a 55.26-kb region on chromosome 6, harboring two candidate genes. Through sequence comparison and gene expression analysis, Cla97C06G122120 (annotated as a pentatricopeptide repeat, PPR) was predicted as the prime candidate gene related to pink flesh trait. To further investigate the role of the PPR gene, its homologous gene in tomato was silenced using a virus-induced system. The resulting silenced fruit lines displayed diminished carotenoid accumulation compared with the wild-type, indicating the potential regulatory function of the PPR gene in pigment accumulation. This study significantly contributes to our understanding of the forward genetics underlying watermelon flesh traits, particularly in relation to carotenoid accumulation. The findings lay essential groundwork for elucidating mechanisms governing pigment synthesis and deposition in watermelon flesh, thereby providing valuable insights for future breeding strategies aimed at enhancing fruit quality and nutritional value.


Asunto(s)
Mapeo Cromosómico , Citrullus , Frutas , Fenotipo , Pigmentación , Proteínas de Plantas , Citrullus/genética , Citrullus/metabolismo , Pigmentación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Genes de Plantas , Carotenoides/metabolismo , Genes Recesivos , Regulación de la Expresión Génica de las Plantas , Cromosomas de las Plantas/genética , Licopeno/metabolismo
3.
Pathogens ; 13(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38535561

RESUMEN

Between 7 December 2022 and 28 February 2023, China experienced a new wave of COVID-19 that swept across the entire country and resulted in an increasing amount of respiratory infections and hospitalizations. The purpose of this study is to reveal the intensity and composition of coinfecting microbial agents. In total, 196 inpatients were recruited from The Third People's Hospital of Shenzhen, and 169 respiratory and 73 blood samples were collected for metagenomic next-generation sequencing. The total "Infectome" was characterized and compared across different groups defined by the SARS-CoV-2 detection status, age groups, and severity of disease. Our results revealed a total of 22 species of pathogenic microbes (4 viruses, 13 bacteria, and 5 fungi), and more were discovered in the respiratory tract than in blood. The diversity of the total infectome was highly distinguished between respiratory and blood samples, and it was generally higher in patients that were SARS-CoV-2-positive, older in age, and with more severe disease. At the individual pathogen level, HSV-1 seemed to be the major contributor to these differences observed in the overall comparisons. Collectively, this study reveals the highly complex respiratory infectome and high-intensity coinfection in patients admitted to the hospital during the period of the 2023 COVID-19 pandemic in China.

4.
Cell Rep ; 43(5): 114238, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38748875

RESUMEN

Triacylglyceride (TAG) synthesis in the small intestine determines the absorption of dietary fat, but the underlying mechanisms remain to be further studied. Here, we report that the RNA-binding protein HuR (ELAVL1) promotes TAG synthesis in the small intestine. HuR associates with the 3' UTR of Dgat2 mRNA and intron 1 of Mgat2 pre-mRNA. Association of HuR with Dgat2 3' UTR stabilizes Dgat2 mRNA, while association of HuR with intron 1 of Mgat2 pre-mRNA promotes the processing of Mgat2 pre-mRNA. Intestinal epithelium-specific HuR knockout reduces the expression of DGAT2 and MGAT2, thereby reducing the dietary fat absorption through TAG synthesis and mitigating high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and obesity. Our findings highlight a critical role of HuR in promoting dietary fat absorption.


Asunto(s)
Dieta Alta en Grasa , Proteína 1 Similar a ELAV , Absorción Intestinal , Triglicéridos , Triglicéridos/metabolismo , Triglicéridos/biosíntesis , Animales , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Ratones , Dieta Alta en Grasa/efectos adversos , Humanos , Ratones Endogámicos C57BL , Masculino , Diacilglicerol O-Acetiltransferasa/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/metabolismo , Obesidad/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Grasas de la Dieta/metabolismo , Grasas de la Dieta/farmacología , Ratones Noqueados , Regiones no Traducidas 3'/genética , Aciltransferasas
5.
J Infect ; 88(3): 106118, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342382

RESUMEN

OBJECTIVES: The respiratory tract is the portal of entry for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a variety of respiratory pathogens other than SARS-CoV-2 have been associated with severe cases of COVID-19 disease, the dynamics of the upper respiratory microbiota during disease the course of disease, and how they impact disease manifestation, remain uncertain. METHODS: We collected 349 longitudinal upper respiratory samples from a cohort of 65 COVID-19 patients (cohort 1), 28 samples from 28 recovered COVID-19 patients (cohort 2), and 59 samples from 59 healthy controls (cohort 3). All COVID-19 patients originated from the earliest stage of the epidemic in Wuhan. Based on a modified clinical scale, the disease course was divided into five clinical disease phases (pseudotimes): "Healthy" (pseudotime 0), "Incremental" (pseudotime 1), "Critical" (pseudotime 2), "Complicated" (pseudotime 3), "Convalescent" (pseudotime 4), and "Long-term follow-up" (pseudotime 5). Using meta-transcriptomics, we investigated the features and dynamics of transcriptionally active microbes in the upper respiratory tract (URT) over the course of COVID-19 disease, as well as its association with disease progression and clinical outcomes. RESULTS: Our results revealed that the URT microbiome exhibits substantial heterogeneity during disease course. Two clusters of microbial communities characterized by low alpha diversity and enrichment for multiple pathogens or potential pathobionts (including Acinetobacter and Candida) were associated with disease progression and a worse clinical outcome. We also identified a series of microbial indicators that classified disease progression into more severe stages. Longitudinal analysis revealed that although the microbiome exhibited complex and changing patterns during COVID-19, a restoration of URT microbiomes from early dysbiosis toward more diverse status in later disease stages was observed in most patients. In addition, a group of potential pathobionts were strongly associated with the concentration of inflammatory indicators and mortality. CONCLUSION: This study revealed strong links between URT microbiome dynamics and disease progression and clinical outcomes in COVID-19, implying that the treatment of severe disease should consider the full spectrum of microbial pathogens present.


Asunto(s)
COVID-19 , Microbiota , Humanos , SARS-CoV-2 , Nariz , Progresión de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA