Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 48(21): 5727-5730, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910744

RESUMEN

Recently and interestingly, experiments show that the CO2 laser conditioning can significantly increase the laser-induced damage threshold (LIDT) of fused silica optics, but its underlying mechanism has not been clearly revealed. This Letter reports the experimental studies on the evolution of the intrinsic point defects and intrinsic ring structures on the surface of fused silica optics under the CO2 laser irradiation. The laser conditioning can effectively reduce the intrinsic defect contents in the surface layer of mechanically processed fused silica. However, the suppression effect of defects can be affected by the initial surface state. If there are micro-cracks on the component surface, the effect of the laser conditioning would be limited. The evolution of the intrinsic ring structures indicate that most of the intrinsic defects tend to recombine as short (Si-O)n ring structures during the laser healing of the micro-fractures. The observed recombination behavior and suppression of the intrinsic defects can help find out the reason for the increase of the LIDT of the fused silica optics.

2.
Opt Express ; 29(20): 32089-32104, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34615287

RESUMEN

The machining-induced cracks and other defects on the surface of fused silica would incur damage when irradiated by intense lasers, which greatly shortens the service life of the fused silica optical components. The high absorption coefficient of fused silica for far-infrared lasers makes it possible to use low-energy CO2 lasers to melt and heal micro defects on the surface, and hence improve its damage threshold under the service conditions of extremely intense laser. However, the air in the cracks may evolve into bubbles during the laser healing process, but the law of crack morphology evolution and the bubble formation mechanism have not been clearly revealed. In this work, a simulation model of the healing process of fused silica surface cracks under the effect of low-energy CO2 laser is established. Three bubble formation mechanisms (i.e., the uneven fluidity caused by temperature gradient, the collapse effect caused by inclined cracks, and the internal cracks) are identified based on the simulation results of cracks with various original morphologies and characteristic structural parameters. The simulated fused silica morphology is consistent with the results of the laser healing experiment. This work can provide theoretical guidance for the optimization of optical manufacturing parameters of fused silica, as well as the CO2 laser healing and polishing strategies.

3.
Soft Matter ; 16(35): 8245-8253, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32803214

RESUMEN

The use of dispersed cross-links with different levels of strength is one of the most successful strategies for toughening a hydrogel. By using a model hydrogel having dispersed association of single-component short alkyl chains, this work demonstrates that the differential modulus-elongation relation derived from tensile curves can reflect the structural evolution of dispersed cross-links at a molecular level. This analysis method allows for decoupling the mechanical contribution of strong and weak hydrophobic clusters, which serve as the minor and major cross-links in our system, respectively. At small deformation, the weak hydrophobic associations majorly determine the stiffness, and their rupture releases folded partial chains to endow deformation capacity. At large deformation, the strength ratio of strong and weak hydrophobic association should be balanced to achieve the optimal strength. Furthermore, the structural parameters of these partial chains, including the Kuhn number, the Kuhn length and the chain conformation, are determined based on scaling theory of extensibility. These results allow for correlating the apparent mechanics to the structural parameters of the dispersed hydrophobic association, paving the way for customized mechanics for specific applications.

4.
Mater Horiz ; 11(13): 3127-3142, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625111

RESUMEN

Achieving mastery over light using thermochromic materials is crucial for energy-saving glazing. However, challenges such as high production costs, limited durability, and recyclability issues have hindered their widespread application in buildings. Herein, we develop a glass interlayer made of a polyvinyl butyral-based hydrogel swollen with LiCl solution. In addition to a fast, isochoric, and reversible transparency-to-opacity transition occurring as ambient temperatures exceed thermally comfortable levels, this hydrogel uniquely encompasses multiple features such as frost resistance, recyclability, scalability, and toughness. The combination of these features is achieved through a delicate balance of polyvinyl butyral's amphiphilicity and the suppression of network-forming phase separation. This design endows a nanostructured polyvinyl butyral-LiCl composite gel with swollen molecular segments linked by dispersed cross-linking sites in the form of hydrophobic nano-nodules. Upon laminating this hydrogel (a thickness of 0.3 mm), the resultant glazing product demonstrates approximately 90% luminous transmittance even at sub-zero temperatures, along with a significant modulation of solar and infrared radiation at 80.8% and 68.5%, respectively. Through simulations, we determined that windows equipped with the hydrogel could reduce energy consumption by 36% compared to conventional glass windows in warm seasons. The widespread adoption of polyvinyl butyral in construction underscores the promise of this hydrogel as a thermochromic interlayer for glazing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA