Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angiogenesis ; 25(4): 439-453, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35857195

RESUMEN

While most tissues exhibit their greatest growth during development, adipose tissue is capable of additional massive expansion in adults. Adipose tissue expandability is advantageous when temporarily storing fuel for use during fasting, but becomes pathological upon continuous food intake, leading to obesity and its many comorbidities. The dense vasculature of adipose tissue provides necessary oxygen and nutrients, and supports delivery of fuel to and from adipocytes under fed or fasting conditions. Moreover, the vasculature of adipose tissue comprises a major niche for multipotent progenitor cells, which give rise to new adipocytes and are necessary for tissue repair. Given the multiple, pivotal roles of the adipose tissue vasculature, impairments in angiogenic capacity may underlie obesity-associated diseases such as diabetes and cardiometabolic disease. Exciting new studies on the single-cell and single-nuclei composition of adipose tissues in mouse and humans are providing new insights into mechanisms of adipose tissue angiogenesis. Moreover, new modes of intercellular communication involving micro vesicle and exosome transfer of proteins, nucleic acids and organelles are also being recognized to play key roles. This review focuses on new insights on the cellular and signaling mechanisms underlying adipose tissue angiogenesis, and on their impact on obesity and its pathophysiological consequences.


Asunto(s)
Tejido Adiposo , Ácidos Nucleicos , Adipocitos , Tejido Adiposo/metabolismo , Adulto , Animales , Humanos , Ratones , Neovascularización Patológica/patología , Ácidos Nucleicos/metabolismo , Obesidad/patología , Oxígeno/metabolismo
2.
bioRxiv ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39211160

RESUMEN

Objective: The uncoupling protein 1 (UCP1) is induced in brown or "beige" adipocytes through catecholamine-induced cAMP signaling, which activates diverse transcription factors. UCP1 expression can also be enhanced by PPARγ agonists such as rosiglitazone (Rsg). However, it is unclear whether this upregulation results from de-novo differentiation of beige adipocytes from progenitor cells, or from the induction of UCP1 in pre-existing adipocytes. To explore this, we employed human adipocytes differentiated from progenitor cells and examined their acute response to Rsg, to the adenylate-cyclase activator forskolin (Fsk), or to both simultaneously. Methods: Adipocytes generated from primary human progenitor cells were differentiated without exposure to PPARγ agonists, and treated for 3, 6 or 78 hours to Fsk, to Rsg, or to both simultaneously. Bulk RNASeq, RNAScope, RT-PCR, CRISPR-Cas9 mediated knockout, oxygen consumption and western blotting were used to assess cellular responses. Results: UCP1 mRNA expression was induced within 3 hours of exposure to either Rsg or Fsk, indicating that Rsg's effect is independent on additional adipocyte differentiation. Although Rsg and Fsk induced distinct overall transcriptional responses, both induced genes associated with calcium metabolism, lipid droplet assembly, and mitochondrial remodeling, denoting core features of human adipocyte beiging. Unexpectedly, we found that Fsk-induced UCP1 expression was reduced by approximately 80% following CRISPR-Cas9-mediated knockout of PNPLA2 , the gene encoding the triglyceride lipase ATGL. As anticipated, ATGL knockout suppressed lipolysis; however, the associated suppression of UCP1 induction indicates that maximal cAMP-mediated UCP1 induction requires products of ATGL-catalyzed lipolysis. Supporting this, we observed that the reduction in Fsk-stimulated UCP1 induction caused by ATGL knockout was reversed by Rsg, implying that the role of lipolysis in this process is to generate natural PPARγ agonists. Conclusion: UCP1 transcription is known to be stimulated by transcription factors activated downstream of cAMP-dependent protein kinases. Here we demonstrate that UCP1 transcription can also be acutely induced through PPARγ-activation. Moreover, both pathways are activated in human adipocytes in response to cAMP, synergistically inducing UCP1 expression. The stimulation of PPARγ in response to cAMP occurs as a result of the production of natural PPARγ activating ligands through ATGL-mediated lipolysis.

3.
Nat Metab ; 5(6): 1014-1028, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37337125

RESUMEN

Mesenchymal stem/progenitor cells are essential for tissue development and repair throughout life, but how they are maintained under chronic differentiation pressure is not known. Using single-cell transcriptomics of human progenitor cells we find that adipose differentiation stimuli elicit two cellular trajectories: one toward mature adipocytes and another toward a pool of non-differentiated cells that maintain progenitor characteristics. These cells are induced by transient Wnt pathway activation and express numerous extracellular matrix genes and are therefore named structural Wnt-regulated adipose tissue cells. We find that the genetic signature of structural Wnt-regulated adipose tissue cells is present in adult human adipose tissue and adipose tissue developed from human progenitor cells in mice. Our results suggest a mechanism whereby adipose differentiation occurs concurrently with the maintenance of a mesenchymal progenitor cell pool, ensuring tissue development, repair and appropriate metabolic control over the lifetime.


Asunto(s)
Células Madre , Vía de Señalización Wnt , Ratones , Humanos , Animales , Adipogénesis , Tejido Adiposo , Adipocitos/metabolismo
4.
Endocrinology ; 163(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34223880

RESUMEN

Adipose tissue distribution in the human body is highly heterogeneous, and the relative mass of different depots is differentially associated with metabolic disease risk. Distinct functions of adipose depots are mediated by their content of specialized adipocyte subtypes, best exemplified by thermogenic adipocytes found in specific depots. Single-cell transcriptome profiling has been used to define the cellular composition of many tissues and organs, but the large size, buoyancy, and fragility of adipocytes have rendered it challenging to apply these techniques to understand the full complexity of adipocyte subtypes in different depots. Discussed here are strategies that have been recently developed for investigating adipocyte heterogeneity, including single-cell RNA-sequencing profiling of the stromal vascular fraction to identify diverse adipocyte progenitors, and single-nuclei profiling to characterize mature adipocytes. These efforts are yielding a more complete characterization of adipocyte subtypes in different depots, insights into the mechanisms of their development, and perturbations associated with different physiological states such as obesity. A better understanding of the adipocyte subtypes that compose different depots will help explain metabolic disease phenotypes associated with adipose tissue distribution and suggest new strategies for improving metabolic health.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/metabolismo , Adipogénesis , Tejido Adiposo Beige/fisiología , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/fisiología , Animales , Estatura , Índice de Masa Corporal , Peso Corporal , Diferenciación Celular , Separación Celular , Humanos , Ratones , Análisis de la Célula Individual , Células Madre/citología , Fracción Vascular Estromal/metabolismo , Termogénesis
5.
Elife ; 112022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36107478

RESUMEN

Mechanisms that control 'beige/brite' thermogenic adipose tissue development may be harnessed to improve human metabolic health. To define these mechanisms, we developed a species-hybrid model in which human mesenchymal progenitor cells were used to develop white or thermogenic/beige adipose tissue in mice. The hybrid adipose tissue developed distinctive features of human adipose tissue, such as larger adipocyte size, despite its neurovascular architecture being entirely of murine origin. Thermogenic adipose tissue recruited a denser, qualitatively distinct vascular network, differing in genes mapping to circadian rhythm pathways, and denser sympathetic innervation. The enhanced thermogenic neurovascular network was associated with human adipocyte expression of THBS4, TNC, NTRK3, and SPARCL1, which enhance neurogenesis, and decreased expression of MAOA and ACHE, which control neurotransmitter tone. Systemic inhibition of MAOA, which is present in human but absent in mouse adipocytes, induced browning of human but not mouse adipose tissue, revealing the physiological relevance of this pathway. Our results reveal species-specific cell type dependencies controlling the development of thermogenic adipose tissue and point to human adipocyte MAOA as a potential target for metabolic disease therapy.


Asunto(s)
Monoaminooxidasa , Termogénesis , Adipogénesis , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Ratones , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Neurogénesis , Termogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA