Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34099565

RESUMEN

Despite their great promise, artificial intelligence (AI) systems have yet to become ubiquitous in the daily practice of medicine largely due to several crucial unmet needs of healthcare practitioners. These include lack of explanations in clinically meaningful terms, handling the presence of unknown medical conditions, and transparency regarding the system's limitations, both in terms of statistical performance as well as recognizing situations for which the system's predictions are irrelevant. We articulate these unmet clinical needs as machine-learning (ML) problems and systematically address them with cutting-edge ML techniques. We focus on electrocardiogram (ECG) analysis as an example domain in which AI has great potential and tackle two challenging tasks: the detection of a heterogeneous mix of known and unknown arrhythmias from ECG and the identification of underlying cardio-pathology from segments annotated as normal sinus rhythm recorded in patients with an intermittent arrhythmia. We validate our methods by simulating a screening for arrhythmias in a large-scale population while adhering to statistical significance requirements. Specifically, our system 1) visualizes the relative importance of each part of an ECG segment for the final model decision; 2) upholds specified statistical constraints on its out-of-sample performance and provides uncertainty estimation for its predictions; 3) handles inputs containing unknown rhythm types; and 4) handles data from unseen patients while also flagging cases in which the model's outputs are not usable for a specific patient. This work represents a significant step toward overcoming the limitations currently impeding the integration of AI into clinical practice in cardiology and medicine in general.


Asunto(s)
Inteligencia Artificial , Cardiología , Aprendizaje Profundo , Electrocardiografía , Médicos , Algoritmos , Humanos , Modelos Cardiovasculares , Curva ROC , Reproducibilidad de los Resultados , Estadística como Asunto , Factores de Tiempo , Incertidumbre
2.
J Mol Cell Cardiol ; 185: 77-87, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37866739

RESUMEN

Cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling controls sinoatrial node cell (SANC) function by affecting the degree of coupling between Ca2+ and membrane clocks. PKA is known to phosphorylate ionic channels, Ca2+ pump and release from the sarcoplasmic reticulum, and enzymes controlling ATP production in the mitochondria. While the PKA cytosolic targets in SANC have been extensively explored, its mitochondrial targets and its ability to maintain SANC energetic balance remain to be elucidated. To investigate the role of PKA in SANC energetics, we tested three hypotheses: (i) PKA is an important regulator of the ATP supply-to-demand balance, (ii) Ca2+ regulation of energetics is important for maintenance of NADH level and (iii) abrupt reduction in ATP demand first reduces the AP firing rate and, after dropping below a certain threshold, leads to a reduction in ATP. To gain mechanistic insights into the ATP supply-to-demand matching regulators, a modified model of mitochondrial energy metabolism was integrated into our coupled-clock model that describes ATP demand. Experimentally, increased ATP demand was accompanied by maintained ATP and NADH levels. Ca2+ regulation of energetics was found by the model to be important in the maintenance of NADH and PKA regulation was found to be important in the maintenance of intracellular ATP and the increase in oxygen consumption. PKA inhibition led to a biphasic reduction in AP firing rate, with the first phase being rapid and ATP-independent, while the second phase was slow and ATP-dependent. Thus, SANC energy balance is maintained by both Ca2+ and PKA signaling.


Asunto(s)
Señalización del Calcio , NAD , NAD/metabolismo , Señalización del Calcio/fisiología , Miocitos Cardíacos/metabolismo , AMP Cíclico/metabolismo , Metabolismo Energético , Nodo Sinoatrial/metabolismo , Adenosina Trifosfato/metabolismo , Calcio/metabolismo
3.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982861

RESUMEN

Bradycardia is initiated by the sinoatrial node (SAN), which is regulated by a coupled-clock system. Due to the clock coupling, reduction in the 'funny' current (If), which affects SAN automaticity, can be compensated, thus preventing severe bradycardia. We hypothesize that this fail-safe system is an inherent feature of SAN pacemaker cells and is driven by synergy between If and other ion channels. This work aimed to characterize the connection between membrane currents and their underlying mechanisms in SAN cells. SAN tissues were isolated from C57BL mice and Ca2+ signaling was measured in pacemaker cells within them. A computational model of SAN cells was used to understand the interactions between cell components. Beat interval (BI) was prolonged by 54 ± 18% (N = 16) and 30 ± 9% (N = 21) in response to If blockade, by ivabradine, or sodium current (INa) blockade, by tetrodotoxin, respectively. Combined drug application had a synergistic effect, manifested by a BI prolonged by 143 ± 25% (N = 18). A prolongation in the local Ca2+ release period, which reports on the level of crosstalk within the coupled-clock system, was measured and correlated with the prolongation in BI. The computational model predicted that INa increases in response to If blockade and that this connection is mediated by changes in T and L-type Ca2+ channels.


Asunto(s)
Bradicardia , Nodo Sinoatrial , Ratones , Animales , Ratones Endogámicos C57BL , Ivabradina/farmacología , Calcio/farmacología , Potenciales de Acción/fisiología
4.
J Clin Psychol Med Settings ; 30(2): 435-444, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35995960

RESUMEN

This study examines psychological and physical influences on the distress and well-being of patients with chronic rheumatic diseases. The study aims were to (1) evaluate the relative contribution of objective disease activity and psychological factors on the wellbeing of patients with systemic lupus erythematosus (SLE); (2) to compare the psychological distress of SLE patients to fibromyalgia (FM) patients and healthy controls, and to (3) characterize subgroups of patients by performing cluster analysis using psychological variables. Participants were ascertained from closed forums and social media channels resulting in 41 women with a diagnosis of SLE, 47 with a diagnosis of FM, and 77 healthy controls (HC). Hierarchical linear regression for well-being of SLE patients found that most of the variance was accounted for by social support. Cluster analysis performed on the entire sample identified two clusters, a distressed group tending to Type D personality, anxiety and depression, low in well-being and social support, and a resilient group; the proportion of resilient individuals was highest in the HC intermediate in the SLE group and lowest in the FM group. The importance of psychological variables vs disease severity in these two rheumatic diseases for wellbeing is demonstrated by these results. The results suggest that psychological interventions that enhance the experience of social support in medical settings, might benefit patients with both diseases, and be of particular importance to the well-being of patients who are more distressed.


Asunto(s)
Fibromialgia , Lupus Eritematoso Sistémico , Enfermedades Reumáticas , Humanos , Femenino , Fibromialgia/complicaciones , Fibromialgia/psicología , Índice de Severidad de la Enfermedad , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/psicología , Ansiedad/psicología
5.
J Mol Cell Cardiol ; 143: 85-95, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32339564

RESUMEN

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced ventricular arrhythmia associated with rhythm disturbance and impaired sinoatrial node cell (SANC) automaticity (pauses). Mutations associated with dysfunction of Ca2+-related mechanisms have been shown to be present in CPVT. These dysfunctions include impaired Ca2+ release from the ryanodine receptor (i.e., RyR2R4496C mutation) or binding to calsequestrin 2 (CASQ2). In SANC, Ca2+ signaling directly and indirectly mediates pacemaker function. We address here the following research questions: (i) what coupled-clock mechanisms and pathways mediate pacemaker mutations associated with CPVT in basal and in response to ß-adrenergic stimulation? (ii) Can different mechanisms lead to the same CPVT-related pacemaker pauses? (iii) Can the mutation-induced deteriorations in SANC function be reversed by drug intervention or gene manipulation? We used a numerical model of mice SANC that includes membrane and intracellular mechanisms and their interconnected signaling pathways. In the basal state of RyR2R4496C SANC, the model predicted that the Na+-Ca2+ exchanger current (INCX) and T-type Ca2+ current (ICaT) mediate between changes in Ca2+ signaling and SANC dysfunction. Under ß-adrenergic stimulation, changes in cAMP-PKA signaling and the sodium currents (INa), in addition to INCX and ICaT, mediate between changes in Ca2+ signaling and SANC automaticity pauses. Under basal conditions in Casq2-/-, the same mechanisms drove changes in Ca2+ signaling and subsequent pacemaker dysfunction. However, SANC automaticity pauses in response to ß-AR stimulation were mediated by ICaT and INa. Taken together, distinct mechanisms can lead to CPVT-associated SANC automaticity pauses. In addition, we predict that specifically increasing SANC cAMP-PKA activity by either a pharmacological agent (IBMX, a phosphodiesterase (PDE) inhibitor), gene manipulation (overexpression of adenylyl cyclase 1/8) or direct manipulation of the SERCA phosphorylation target through changes in gene expression, compensate for the impairment in SANC automaticity. These findings suggest new insights for understanding CPVT and its therapeutic approach.


Asunto(s)
Predisposición Genética a la Enfermedad , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Mutación , Taquicardia Ventricular/etiología , Taquicardia Ventricular/fisiopatología , Algoritmos , Alelos , Animales , Calcio/metabolismo , Señalización del Calcio , Calsecuestrina , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Genotipo , Cadenas de Markov , Ratones , Ratones Noqueados , Modelos Biológicos , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
6.
Biophys J ; 115(8): 1603-1613, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30274832

RESUMEN

In the heart, mitochondria are arranged in pairs sandwiched between the contractile machinery, which is the major ATP consumer. Thus, in response to the contraction-relaxation cycle of the cell, the mitochondrial membrane should deform accordingly. Membrane deformations in isolated ATP synthesis or in isolated mitochondria affect ATP production. However, it is unknown whether physiological deformation of the mitochondrial membrane in response to the contraction-relaxation cycle can act as a bioenergetic signaling mechanism between ATP demand to supply. We used both experimental and computational tools to reveal whether bioenergetic feedback exists between heart cell contractile machinery and mitochondrial three-dimensional (3D) deformations. We measured the mitochondrial 3D deformation in contracting rabbit cardiac myocytes and used published data on rat cardiac myocytes. These measurements were an input to a novel biophysics model that includes a description of ionic molecules on the mitochondrial membrane, Ca2+ cycling, and mitochondrial membrane stress. As is the case for rat cardiomyocytes, in rabbit cardiomyocytes, the mitochondrial length contracted and expanded with a similar dynamic as the sarcomere length. In contrast, the mitochondrial width expanded and then contracted with a similar dynamic as the mitochondrial length. Differences in the extent of deformation and fractional deformation between the width- and thick-axes were quantified and interpreted as the degree anisotropy between those respective axes. Finally, the model predicts that significant bioenergetic feedback between heart cell contractile machinery and mitochondrial 3D deformations does exist in unloaded rabbit and rat cells. However, this feedback is not a dominant mechanism in ATP supply to demand matching.


Asunto(s)
Metabolismo Energético , Ventrículos Cardíacos/patología , Mitocondrias Cardíacas/patología , Membranas Mitocondriales/patología , Contracción Miocárdica , Miocitos Cardíacos/patología , Estrés Mecánico , Adenosina Trifosfato/metabolismo , Animales , Calcio , Ventrículos Cardíacos/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Conejos
7.
Biophys J ; 114(5): 1176-1189, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29539403

RESUMEN

Recent data suggest that cardiac pacemaker cell function is determined by numerous time-, voltage-, and Ca-dependent interactions of cell membrane electrogenic proteins (M-clock) and intracellular Ca cycling proteins (Ca-clock), forming a coupled-clock system. Many aspects of the coupled-clock system, however, remain underexplored. The key players of the system are Ca release channels (ryanodine receptors), generating local Ca releases (LCRs) from sarcoplasmic reticulum, electrogenic Na/Ca exchanger (NCX) current, and L-type Ca current (ICaL). We combined numerical model simulations with experimental simultaneous recordings of action potentials (APs) and Ca to gain further insight into the complex interactions within the system. Our simulations revealed a positive feedback mechanism, dubbed AP ignition, which accelerates the diastolic depolarization (DD) to reach AP threshold. The ignition phase begins when LCRs begin to occur and the magnitude of inward NCX current begins to increase. The NCX current, together with funny current and T-type Ca current accelerates DD, bringing the membrane potential to ICaL activation threshold. During the ignition phase, ICaL-mediated Ca influx generates more LCRs via Ca-induced Ca release that further activates inward NCX current, creating a positive feedback. Simultaneous recordings of membrane potential and confocal Ca images support the model prediction of the positive feedback among LCRs and ICaL, as diastolic LCRs begin to occur below and continue within the voltage range of ICaL activation. The ignition phase onset (identified within the fine DD structure) begins when DD starts to notably accelerate (∼0.15 V/s) above the recording noise. Moreover, the timing of the ignition onset closely predicted the duration of each AP cycle in the basal state, in the presence of autonomic receptor stimulation, and in response to specific inhibition of either the M-clock or Ca-clock, thus indicating general importance of the new coupling mechanism for regulation of the pacemaker cell cycle duration, and ultimately the heart rate.


Asunto(s)
Potenciales de Acción , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Retroalimentación Fisiológica , Modelos Cardiovasculares , Intercambiador de Sodio-Calcio/metabolismo , Animales , Diástole , Conejos , Retículo Sarcoplasmático/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 310(9): H1259-66, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26945074

RESUMEN

Cardiac pacemaker cell function is regulated by a coupled-clock system that integrates molecular cues on the cell-membrane surface (i.e., membrane clock) and on the sarcoplasmic reticulum (SR) (i.e., Ca(2+) clock). A recent study has shown that cotransfection of spontaneous beating cells (HEK293 cells and neonatal rat myocytes) with R524Q-mutant human hyperpolarization-activated cyclic nucleotide-gated molecules (the dominant component of funny channels) increases the funny channel's sensitivity to cAMP and leads to a decrease in spontaneous action potential (AP) cycle length (i.e., tachycardia). We hypothesize that in rabbit pacemaker cells, the same behavior is expected, and because of the coupled-clock system, the resultant steady-state decrease in AP cycle length will embody contributions from both clocks: the initial decrease in the spontaneous AP beating interval, arising from increased sensitivity of the f-channel to cAMP, will be accompanied by an increase in the adenylyl cyclase (AC)-cAMP-PKA-dependent phosphorylation activity, which will further decrease this interval. To test our hypothesis, we used the recently developed Yaniv-Lakatta pacemaker cell numerical model. This model predicts the cAMP signaling dynamics, as well as the kinetics and magnitude of protein phosphorylation in both normal and mutant pacemaker cells. We found that R524Q-mutant pacemaker cells have a shorter AP firing rate than that of wild-type cells and that gain in pacemaker function is the net effect of the R514Q mutation on the functioning of the coupled-clock system. Specifically, our results directly support the hypothesis that changes in Ca(2+)-activated AC-cAMP-PKA signaling are involved in the development of tachycardia in R524Q-mutant pacemaker cells.


Asunto(s)
Relojes Biológicos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Frecuencia Cardíaca , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Modelos Cardiovasculares , Fosforilación , Sistemas de Mensajero Secundario , Nodo Sinoatrial/enzimología , Taquicardia/enzimología , Potenciales de Acción , Adenilil Ciclasas/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Simulación por Computador , AMP Cíclico/metabolismo , Predisposición Genética a la Enfermedad , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Cinética , Mutación , Análisis Numérico Asistido por Computador , Fenotipo , Conejos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Nodo Sinoatrial/citología , Taquicardia/genética , Taquicardia/fisiopatología
9.
Am J Physiol Heart Circ Physiol ; 311(1): H251-67, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27208164

RESUMEN

Coupling of an intracellular Ca(2+) clock to surface membrane ion channels, i.e., a "membrane clock, " via coupling of electrochemical Na(+) and Ca(2+) gradients (ENa and ECa, respectively) has been theorized to regulate sinoatrial nodal cell (SANC) normal automaticity. To test this hypothesis, we measured responses of [Na(+)]i, [Ca(2+)]i, membrane potential, action potential cycle length (APCL), and rhythm in rabbit SANCs to Na(+)/K(+) pump inhibition by the digitalis glycoside, digoxigenin (DG, 10-20 µmol/l). Initial small but significant increases in [Na(+)]i and [Ca(2+)]i and reductions in ENa and ECa in response to DG led to a small reduction in maximum diastolic potential (MDP), significantly enhanced local diastolic Ca(2+) releases (LCRs), and reduced the average APCL. As [Na(+)]i and [Ca(2+)]i continued to increase at longer times following DG exposure, further significant reductions in MDP, ENa, and ECa occurred; LCRs became significantly reduced, and APCL became progressively and significantly prolonged. This was accompanied by increased APCL variability. We also employed a coupled-clock numerical model to simulate changes in ENa and ECa simultaneously with ion currents not measured experimentally. Numerical modeling predicted that, as the ENa and ECa monotonically reduced over time in response to DG, ion currents (ICaL, ICaT, If, IKr, and IbNa) monotonically decreased. In parallel with the biphasic APCL, diastolic INCX manifested biphasic changes; initial INCX increase attributable to enhanced LCR ensemble Ca(2+) signal was followed by INCX reduction as ENCX (ENCX = 3ENa - 2ECa) decreased. Thus SANC automaticity is tightly regulated by ENa, ECa, and ENCX via a complex interplay of numerous key clock components that regulate SANC clock coupling.


Asunto(s)
Relojes Biológicos , Señalización del Calcio , Calcio/metabolismo , Frecuencia Cardíaca , Periodicidad , Nodo Sinoatrial/metabolismo , Sodio/metabolismo , Potenciales de Acción , Animales , Relojes Biológicos/efectos de los fármacos , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Simulación por Computador , Digoxigenina/farmacología , Canales Epiteliales de Sodio/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Técnicas In Vitro , Masculino , Modelos Cardiovasculares , Análisis Numérico Asistido por Computador , Conejos , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos , Intercambiador de Sodio-Calcio/metabolismo , Factores de Tiempo
10.
J Mol Cell Cardiol ; 86: 168-78, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26241846

RESUMEN

cAMP-PKA protein kinase is a key nodal signaling pathway that regulates a wide range of heart pacemaker cell functions. These functions are predicted to be involved in regulation of spontaneous action potential (AP) generation of these cells. Here we investigate if the kinetics and stoichiometry of increase in PKA activity match the increase in AP firing rate in response to ß-adrenergic receptor (ß-AR) stimulation or phosphodiesterase (PDE) inhibition, that alters the AP firing rate of heart sinoatrial pacemaker cells. In cultured adult rabbit pacemaker cells infected with an adenovirus expressing the FRET sensor AKAR3, the EC50 in response to graded increases in the intensity of ß-AR stimulation (by Isoproterenol) the magnitude of the increases in PKA activity and the spontaneous AP firing rate were similar (0.4±0.1nM vs. 0.6±0.15nM, respectively). Moreover, the kinetics (t1/2) of the increases in PKA activity and spontaneous AP firing rate in response to ß-AR stimulation or PDE inhibition were tightly linked. We characterized the system rate-limiting biochemical reactions by integrating these experimentally derived data into a mechanistic-computational model. Model simulations predicted that phospholamban phosphorylation is a potent target of the increase in PKA activity that links to increase in spontaneous AP firing rate. In summary, the kinetics and stoichiometry of increases in PKA activity in response to a physiological (ß-AR stimulation) or pharmacological (PDE inhibitor) stimuli match those of changes in the AP firing rate. Thus Ca(2+)-cAMP/PKA-dependent phosphorylation limits the rate and magnitude of increase in spontaneous AP firing rate.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Receptores Adrenérgicos beta/metabolismo , Nodo Sinoatrial/efectos de los fármacos , Animales , Señalización del Calcio , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Humanos , Cinética , Inhibidores de Fosfodiesterasa/administración & dosificación , Fosforilación/efectos de los fármacos , Conejos , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología , Transducción de Señal/efectos de los fármacos , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/patología
11.
Circ Res ; 113(10): e94-e100, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24158576

RESUMEN

RATIONALE: A recent study published in Circulation Research by Gao et al used sinoatrial node (SAN)-targeted, incomplete Ncx1 knockout in mice to explore the role of the Na(+)/Ca(2+) exchanger (NCX) in cardiac pacemaker. The authors concluded that NCX is required for increasing sinus rates, but not for maintaining resting heart rate. This conclusion was based, in part, on numeric model simulations performed by Gao et al that reproduced their experimental results of unchanged action potentials in the knockout SAN cells. The authors, however, did not simulate the NCX current (INCX), that is, the subject of the study. OBJECTIVE: We extended numeric examinations to simulate INCX in their incomplete knockout SAN cells that is crucial to interpret the study results. METHODS AND RESULTS: INCX and Ca(2+) dynamics were simulated using different contemporary numeric models of SAN cells. We found that minimum diastolic Ca(2+) levels and INCX amplitudes generated by remaining NCX molecules (only 20% of control) remained almost unchanged. Simulations using a new local Ca(2+) control model indicate that these powerful compensatory mechanisms involve complex local cross-talk of Ca(2+) cycling proteins and NCX. Specifically, lower NCX expression facilitates Ca(2+)-induced Ca(2+) release and larger local Ca(2+) releases that stabilize diastolic INCX. Further reduction of NCX expression results in arrhythmia and halt of automaticity. CONCLUSIONS: Remaining NCX molecules in the incomplete knockout model likely produce almost the same diastolic INCX as in wild-type cells. INCX contribution is crucially important for both basal automaticity of SAN cells and during the fight-or-flight reflex.


Asunto(s)
Frecuencia Cardíaca/fisiología , Descanso/fisiología , Nodo Sinoatrial/fisiología , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/genética , Animales
12.
J Mol Cell Cardiol ; 77: 1-10, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25257916

RESUMEN

Recent evidence indicates that the spontaneous action potential (AP) of isolated sinoatrial node cells (SANCs) is regulated by a system of stochastic mechanisms embodied within two clocks: ryanodine receptors of the "Ca(2+) clock" within the sarcoplasmic reticulum, spontaneously activate during diastole and discharge local Ca(2+) releases (LCRs) beneath the cell surface membrane; clock crosstalk occurs as LCRs activate an inward Na(+)/Ca(2+) exchanger current (INCX), which together with If and decay of K(+) channels prompts the "M clock," the ensemble of sarcolemmal-electrogenic molecules, to generate APs. Prolongation of the average LCR period accompanies prolongation of the average AP beating interval (BI). Moreover, the prolongation of the average AP BI accompanies increased AP BI variability. We hypothesized that both the average AP BI and AP BI variability are dependent upon stochasticity of clock mechanisms reported by the variability of LCR period. We perturbed the coupled-clock system by directly inhibiting the M clock by ivabradine (IVA) or the Ca(2+) clock by cyclopiazonic acid (CPA). When either clock is perturbed by IVA (3, 10 and 30 µM), which has no direct effect on Ca(2+) cycling, or CPA (0.5 and 5 µM), which has no direct effect on the M clock ion channels, the clock system failed to achieve the basal AP BI and both AP BI and AP BI variability increased. The changes in average LCR period and its variability in response to perturbations of the coupled-clock system were correlated with changes in AP beating interval and AP beating interval variability. We conclude that the stochasticity within the coupled-clock system affects and is affected by the AP BI firing rate and rhythm via modulation of the effectiveness of clock coupling.


Asunto(s)
Potenciales de Acción , Nodo Sinoatrial/fisiología , Animales , Benzazepinas/farmacología , Relojes Biológicos , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio , Indoles/farmacología , Ivabradina , Contracción Miocárdica , Conejos , Retículo Sarcoplasmático/metabolismo , Análisis de la Célula Individual , Nodo Sinoatrial/citología , Procesos Estocásticos
13.
Am J Physiol Heart Circ Physiol ; 306(10): H1385-97, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24633551

RESUMEN

A reduced sinoatrial node (SAN) functional reserve underlies the age-associated decline in heart rate acceleration in response to stress. SAN cell function involves an oscillatory coupled-clock system: the sarcoplasmic reticulum (SR), a Ca(2+) clock, and the electrogenic-sarcolemmal membrane clock. Ca(2+)-activated-calmodulin-adenylyl cyclase/CaMKII-cAMP/PKA-Ca(2+) signaling regulated by phosphodiesterase activity drives SAN cells automaticity. SR-generated local calcium releases (LCRs) activate Na(+)/Ca(2+) exchanger in the membrane clock, which initiates the action potential (AP). We hypothesize that SAN cell dysfunctions accumulate with age. We found a reduction in single SAN cell AP firing in aged (20-24 mo) vs. adult (3-4 mo) mice. The sensitivity of the SAN beating rate responses to both muscarinic and adrenergic receptor activation becomes decreased in advanced age. Additionally, age-associated coincident dysfunctions occur stemming from compromised clock functions, including a reduced SR Ca(2+) load and a reduced size, number, and duration of spontaneous LCRs. Moreover, the sensitivity of SAN beating rate to a cAMP stress induced by phosphodiesterase inhibitor is reduced, as are the LCR size, amplitude, and number in SAN cells from aged vs. adult mice. These functional changes coincide with decreased expression of crucial SR Ca(2+)-cycling proteins, including SR Ca(2+)-ATPase pump, ryanodine receptors, and Na(+)/Ca(2+) exchanger. Thus a deterioration in intrinsic Ca(2+) clock kinetics in aged SAN cells, due to deficits in intrinsic SR Ca(2+) cycling and its response to a cAMP-dependent pathway activation, is involved in the age-associated reduction in intrinsic resting AP firing rate, and in the reduction in the acceleration of heart rate during exercise.


Asunto(s)
Envejecimiento/fisiología , Calcio/deficiencia , Proteínas Quinasas Dependientes de AMP Cíclico/deficiencia , AMP Cíclico/deficiencia , Transducción de Señal/fisiología , Nodo Sinoatrial/fisiopatología , Potenciales de Acción/fisiología , Animales , Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/deficiencia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Frecuencia Cardíaca/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Retículo Sarcoplasmático/fisiología , Estrés Fisiológico/fisiología
14.
J Pharmacol Sci ; 125(1): 6-38, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24748434

RESUMEN

Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent "coupled-clock" theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age.


Asunto(s)
Relojes Biológicos/fisiología , Nodo Sinoatrial/citología , Nodo Sinoatrial/fisiología , Animales , Señalización del Calcio/fisiología , AMP Cíclico/fisiología , Humanos , Canales Iónicos/fisiología , Mitocondrias/fisiología , Modelos Biológicos , Modelos Teóricos , Fosforilación , Proteínas/metabolismo
15.
Biophys J ; 105(7): 1551-61, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24094396

RESUMEN

Whether intracellular Ca(2+) cycling dynamics regulate cardiac pacemaker cell function on a beat-to-beat basis remains unknown. Here we show that under physiological conditions, application of low concentrations of caffeine (2-4 mM) to isolated single rabbit sinoatrial node cells acutely reduces their spontaneous action potential cycle length (CL) and increases Ca(2+) transient amplitude for several cycles. Numerical simulations, using a modified Maltsev-Lakatta coupled-clock model, faithfully reproduced these effects, and also the effects of CL prolongation and dysrhythmic spontaneous beating (produced by cytosolic Ca(2+) buffering) and an acute CL reduction (produced by flash-induced Ca(2+) release from a caged Ca(2+) buffer), which we had reported previously. Three contemporary numerical models (including the original Maltsev-Lakatta model) failed to reproduce the experimental results. In our proposed new model, Ca(2+) releases acutely change the CL via activation of the Na(+)/Ca(2+) exchanger current. Time-dependent CL reductions after flash-induced Ca(2+) releases (the memory effect) are linked to changes in Ca(2+) available for pumping into sarcoplasmic reticulum which, in turn, changes the sarcoplasmic reticulum Ca(2+) load, diastolic Ca(2+) releases, and Na(+)/Ca(2+) exchanger current. These results support the idea that Ca(2+) regulates CL in cardiac pacemaker cells on a beat-to-beat basis, and suggest a more realistic numerical mechanism of this regulation.


Asunto(s)
Potenciales de Acción , Señalización del Calcio , Miocitos Cardíacos/metabolismo , Nodo Sinoatrial/fisiología , Animales , Cafeína/farmacología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Conejos , Nodo Sinoatrial/citología , Nodo Sinoatrial/metabolismo , Sodio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo
17.
J Mol Cell Cardiol ; 62: 80-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23651631

RESUMEN

Beneficial clinical bradycardic effects of ivabradine (IVA) have been interpreted solely on the basis of If inhibition, because IVA specifically inhibits If in sinoatrial nodal pacemaker cells (SANC). However, it has been recently hypothesized that SANC normal automaticity is regulated by crosstalk between an "M clock," the ensemble of surface membrane ion channels, and a "Ca(2+) clock," the sarcoplasmic reticulum (SR). We tested the hypothesis that crosstalk between the two clocks regulates SANC automaticity, and that indirect suppression of the Ca(2+) clock further contributes to IVA-induced bradycardia. IVA (3 µM) not only reduced If amplitude by 45 ± 6% in isolated rabbit SANC, but the IVA-induced slowing of the action potential (AP) firing rate was accompanied by reduced SR Ca(2+) load, slowed intracellular Ca(2+) cycling kinetics, and prolonged the period of spontaneous local Ca(2+) releases (LCRs) occurring during diastolic depolarization. Direct and specific inhibition of SERCA2 by cyclopiazonic acid (CPA) had effects similar to IVA on LCR period and AP cycle length. Specifically, the LCR period and AP cycle length shift toward longer times almost equally by either direct perturbations of the M clock (IVA) or the Ca(2+) clock (CPA), indicating that the LCR period reports the crosstalk between the clocks. Our numerical model simulations predict that entrainment between the two clocks that involves a reduction in INCX during diastolic depolarization is required to explain the experimentally AP firing rate reduction by IVA. In summary, our study provides new evidence that a coupled-clock system regulates normal cardiac pacemaker cell automaticity. Thus, IVA-induced bradycardia includes a suppression of both clocks within this system.


Asunto(s)
Benzazepinas/farmacología , Bradicardia/inducido químicamente , Calcio/metabolismo , Nodo Sinoatrial/citología , Animales , Indoles/farmacología , Ivabradina , Modelos Biológicos , Modelos Teóricos , Conejos , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Nodo Sinoatrial/efectos de los fármacos
18.
Am J Physiol Heart Circ Physiol ; 304(11): H1428-38, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23604710

RESUMEN

The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca(2+)-calmodulin activated adenylyl cyclases (AC), cAMP-mediated protein kinase A (PKA), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent phosphorylation of SR Ca(2+) cycling and surface membrane ion channel proteins. When the throughput of this signaling increases, e.g., in response to ß-adrenergic receptor activation, the resultant increase in spontaneous AP firing rate increases the demand for ATP. We hypothesized that an increase of ATP production to match the increased ATP demand is achieved via a direct effect of increased mitochondrial Ca(2+) (Ca(2+)m) and an indirect effect via enhanced Ca(2+)-cAMP/PKA-CaMKII signaling to mitochondria. To increase ATP demand, single isolated rabbit SANCs were superfused by physiological saline at 35 ± 0.5°C with isoproterenol, or by phosphodiesterase or protein phosphatase inhibition. We measured cytosolic and mitochondrial Ca(2+) and flavoprotein fluorescence in single SANC, and we measured cAMP, ATP, and O2 consumption in SANC suspensions. Although the increase in spontaneous AP firing rate was accompanied by an increase in O2 consumption, the ATP level and flavoprotein fluorescence remained constant, indicating that ATP production had increased. Both Ca(2+)m and cAMP increased concurrently with the increase in AP firing rate. When Ca(2+)m was reduced by Ru360, the increase in spontaneous AP firing rate in response to isoproterenol was reduced by 25%. Thus, both an increase in Ca(2+)m and an increase in Ca(2+) activated cAMP-PKA-CaMKII signaling regulate the increase in ATP supply to meet ATP demand above the basal level.


Asunto(s)
Adenosina Trifosfato/metabolismo , Relojes Biológicos/fisiología , Corazón/fisiología , Miocardio/citología , Miocardio/metabolismo , Animales , Señalización del Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Separación Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Citosol/metabolismo , Flavoproteínas/metabolismo , Frecuencia Cardíaca/fisiología , Técnicas In Vitro , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Consumo de Oxígeno/fisiología , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Conejos , Receptores Adrenérgicos beta/fisiología , Frecuencia Respiratoria/fisiología
19.
Cells ; 12(14)2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37508546

RESUMEN

The synergy between Na+-K+ pumps, Na+-Ca2+ exchangers, membrane currents and the sarcoplasmic reticulum (SR) generates the coupled-clock system, which governs the spontaneous electrical activity of heart sinoatrial node cells (SANCs). Ca2+ mediates the degree of clock coupling via local Ca2+ release (LCR) from the SR and activation of cAMP/PKA signaling. Marinobufagenin (MBG) is a natural Na+-K+ pump inhibitor whose effect on SANCs has not been measured before. The following two hypotheses were tested to determine if and how MBG mediates between the Na+-K+ pump and spontaneous SAN activity: (i) MBG has a distinct effect on beat interval (BI) due to variable effects on LCR characteristics, and (ii) Ca2+ is an important mediator between MBG and SANC activity. Ca2+ transients were measured by confocal microscopy during application of increasing concentrations of MBG. To further support the hypothesis that Ca2+ mediates between MBG and SANC activity, Ca2+ was chelated by the addition of BAPTA. Dose response tests found that 100 nM MBG led to no change in BI in 6 SANCs (no BI change group), and to BI prolongation in 10 SANCs (BI change group). At the same concentration, the LCR period was prolonged in both groups, but more significantly in the BI change group. BAPTA-AM prolonged the BI in 12 SANCs. In the presence of BAPTA, 100 nM MBG had no effect on SANC BI or on the LCR period. In conclusion, the MBG effects on SANC function are mediated by the coupled clock system, and Ca2+ is an important regulator of these effects.


Asunto(s)
Señalización del Calcio , Glicósidos Cardíacos , Animales , Conejos , Glicósidos Cardíacos/farmacología , Nodo Sinoatrial
20.
Sci Rep ; 13(1): 16937, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805616

RESUMEN

Use of non-stationary physiological signals for biometric verification, reduces the ability to forge. Such signals should be simple to acquire with inexpensive equipment. The beat-to-beat information embedded within the time intervals between consecutive heart beats is a non-stationary physiological signal; its potential for biometric verification has not been studied. This work introduces a biometric verification method termed "CompaRR". Heartbeat was extracted from longitudinal recordings from 30 mice ranging from 6 to 24 months of age (equivalent to ~ 20-75 human years). Fifty heartbeats, which is close to resting human heartbeats in a minute, were sufficient for the verification task, achieving a minimal equal error rate of 0.21. When trained on 6-month-old mice and tested on unseen mice up to 18-months of age (equivalent to ~ 50 human years), no significant change in the verification performance was noted. Finally, when the model was trained on data from drug-treated mice, verification was still possible.


Asunto(s)
Electrocardiografía , Corazón , Humanos , Animales , Ratones , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Lactante , Electrocardiografía/métodos , Biometría/métodos , Frecuencia Cardíaca/fisiología , Tórax , Procesamiento de Señales Asistido por Computador , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA