Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nano Lett ; 15(10): 7105-11, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26352520

RESUMEN

"Bottom-up" approaches to the many-body physics of fermions have recently demonstrated precise number and site-resolved preparations with tunability of interparticle interactions in single-well, SW, and double-well, DW, nanoscale confinements created by manipulating ultracold fermionic atoms with optical tweezers. These experiments emulate an analogue-simulator mapping onto the requisite microscopic Hamiltonian, approaching realization of Feynmans' vision of quantum simulators that "will do exactly the same as nature". Here we report on exact benchmark configuration-interaction computational microscopy solutions of the Hamiltonian, uncovering the spectral evolution, wave function anatomy, and entanglement properties of the interacting fermions in the entire parameter range, including crossover from an SW to a DW confinement and a controllable energy imbalance between the wells. We demonstrate attractive pairing and formation of repulsive, highly correlated, ultracold Wigner molecules, well-described in the natural orbital representation. The agreement with the measurements affirms the henceforth gained deep insights into ultracold molecules and opens access to the size-dependent evolution of nanoclustered and condensed-matter phases and ultracold-atoms quantum information.

2.
Chemphyschem ; 14(6): 1272-82, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23508895

RESUMEN

A discrete sequence of bare gold clusters of well-defined nuclearity, namely Au25(+), Au38(+) and Au102(+), formed in a process that starts from gold-bound adducts of the protein lysozyme, were detected in the gas phase. It is proposed that subsequent to laser desorption ionization, gold clusters form in the gas phase, with the protein serving as a confining growth environment that provides an effective reservoir for dissipation of the cluster aggregation and stabilization energy. First-principles calculations reveal that the growing gold clusters can be electronically stabilized in the protein environment, achieving electronic closed-shell structures as a result of bonding interactions with the protein. Calculations for a cluster with 38 gold atoms reveal that gold interaction with the protein results in breaking of the disulfide bonds of the cystine units, and that the binding of the cysteine residues to the cluster depletes the number of delocalized electrons in the cluster, resulting in opening of a super-atom electronic gap. This shell-closure stabilization mechanism confers enhanced stability to the gold clusters. Once formed as stable magic number aggregates in the protein growth medium, the gold clusters become detached from the protein template and are observed as bare Au(n)(+) (n=25, 38, and 102) clusters.


Asunto(s)
Oro/química , Muramidasa/química , Electrones , Gases/química , Oro/metabolismo , Modelos Químicos , Muramidasa/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
J Phys Condens Matter ; 34(21)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35379767

RESUMEN

It is demonstrated that exact diagonalization of the microscopic many-body Hamiltonian via systematic full configuration-interaction (FCI) calculations is able to predict the spectra as a function of detuning of three-electron hybrid qubits based on GaAs asymmetric double quantum dots (QDs). It is further shown that, as a result of strong inter-electron correlations, these spectroscopic patterns, including avoided crossings between states associated with different electron occupancies of the left and right wells, are inextricably related to the formation of Wigner molecules (WMs). These physical entities cannot be captured by the previously employed independent-particle or Hubbard-type theoretical modeling of the hybrid qubit. We report remarkable agreement with recent experimental results. Moreover, the present FCI methodology for multi-well QDs can be straightforwardly extended to treat Si/SiGe hybrid qubits, where the central role of WMs was recently experimentally confirmed as well.

4.
Rep Prog Phys ; 70(12)2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34996294

RESUMEN

Investigations of emergent symmetry breaking phenomena occurring in small finite-size systems are reviewed, with a focus on the strongly correlated regime of electrons in two-dimensional semiconductor quantum dots and trapped ultracold bosonic atoms in harmonic traps. Throughout the review we emphasize universal aspects and similarities of symmetry breaking found in these systems, as well as in more traditional fields like nuclear physics and quantum chemistry, which are characterized by very different interparticle forces. A unified description of strongly correlated phenomena in finite systems of repelling particles (whether fermions or bosons) is presented through the development of a two-step method of symmetry breaking at the unrestricted Hartree-Fock level and of subsequent symmetry restoration via post Hartree-Fock projection techniques. Quantitative and qualitative aspects of the two-step method are treated and validated by exact diagonalization calculations.Strongly-correlated phenomena emerging from symmetry breaking include the following.Chemical bonding, dissociation and entanglement (at zero and finite magnetic fields) in quantum dot molecules and in pinned electron molecular dimers formed within a single anisotropic quantum dot, with potential technological applications to solid-state quantum-computing devices.Electron crystallization, with particle localization on the vertices of concentric polygonal rings, and formation of rotating electron molecules (REMs) in circular quantum dots. Such electron molecules exhibit ro-vibrational excitation spectra, in analogy with natural molecules.At high magnetic fields, the REMs are described by parameter-free analytic wave functions, which are an alternative to the Laughlin and composite-fermion approaches, offering a new point of view of the fractional quantum Hall regime in quantum dots (with possible implications for the thermodynamic limit).Crystalline phases of strongly repelling bosons. In rotating traps and in analogy with the REMs, such repelling bosons form rotating boson molecules (RBMs). For a small number of bosons, the RBMs are energetically favored compared with the Gross-Pitaevskii solutions describing vortex formation.We discuss the present status concerning experimental signatures of such strongly correlated states, in view of the promising outlook created by the latest experimental improvements that are achieving unprecedented control over the range and strength of interparticle interactions.

5.
Sci Rep ; 5: 7893, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25599915

RESUMEN

Graphene's isolation launched explorations of fundamental relativistic physics originating from the planar honeycomb lattice arrangement of the carbon atoms, and of potential technological applications in nanoscale electronics. Bottom-up fabricated atomically-precise segmented graphene nanoribbons, SGNRs, open avenues for studies of electrical transport, coherence, and interference effects in metallic, semiconducting, and mixed GNRs, with different edge terminations. Conceptual and practical understanding of electric transport through SGNRs is gained through nonequilibrium Green's function (NEGF) conductance calculations and a Dirac continuum model that absorbs the valence-to-conductance energy gaps as position-dependent masses, including topological-in-origin mass-barriers at the contacts between segments. The continuum model reproduces the NEGF results, including optical Dirac Fabry-Prot (FP) equidistant oscillations for massless relativistic carriers in metallic armchair SGNRs, and an unequally-spaced FP pattern for mixed armchair-zigzag SGNRs where carriers transit from a relativistic (armchair) to a nonrelativistic (zigzag) regime. This provides a unifying framework for analysis of coherent transport phenomena and interpretation of forthcoming experiments in SGNRs.

6.
Phys Rev Lett ; 101(13): 136803, 2008 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-18851479

RESUMEN

Systematic trends of nonuniversal behavior of electron-transmission phases through a quantum dot, with no phase lapse for the transition N = 1-->N = 2 and a lapse of pi for the N = 2-->N = 3 transition, are predicted, in agreement with experiments, from many-body transport calculations involving exact diagonalization of the dot Hamiltonian. The results favor shape anisotropy of the dot and strong e-e repulsion with consequent electron localization, showing dependence on spin configurations and the participation of excited doorway transmission channels.

7.
Proc Natl Acad Sci U S A ; 103(28): 10600-5, 2006 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-16740665

RESUMEN

We discuss the formation of crystalline electron clusters in semiconductor quantum dots and of crystalline patterns of neutral bosons in harmonic traps. In a first example, we use calculations for two electrons in an elliptic quantum dot to show that the electrons can localize and form a molecular dimer. The calculated singlet-triplet splitting (J) as a function of the magnetic field (B) agrees with cotunneling measurements with its behavior reflecting the effective dissociation of the dimer for large B. Knowledge of the dot shape and of J(B) allows determination of the degree of entanglement. In a second example, we study strongly repelling neutral bosons in two-dimensional harmonic traps. Going beyond the Gross-Pitaevskii (GP) mean-field approximation, we show that bosons can localize and form polygonal-ring-like crystalline patterns. The total energy of the crystalline phase saturates in contrast to the GP solution, and its spatial extent becomes smaller than that of the GP condensate.

8.
Phys Rev Lett ; 97(9): 090401, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17026345

RESUMEN

We present a variational many-body wave function for repelling bosons in rotating traps, focusing on rotational frequencies that do not lead to restriction to the lowest Landau level. This wave function incorporates correlations beyond the Gross-Pitaevskii (GP) mean-field approximation, and it describes rotating boson molecules (RBMs) made of localized bosons that form polygonal-ring-like crystalline patterns in their intrinsic frame of reference. The RBMs exhibit characteristic periodic dependencies of the ground-state angular momenta on the number of bosons in the polygonal rings. For small numbers of neutral bosons, the RBM ground-state energies are found to be always lower than those of the corresponding GP solutions, in particular, in the regime of GP vortex formation.

9.
Phys Rev Lett ; 93(23): 230405, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15601132

RESUMEN

Strongly-interacting bosons in two-dimensional harmonic traps are described through breaking of rotational symmetry at the Hartree-Fock level and subsequent symmetry restoration via projection techniques, thus incorporating correlations beyond the Gross-Pitaevskii (GP) solution. The bosons localize and form polygonal-ringlike crystalline patterns, both for a repulsive contact potential and a Coulomb interaction, as revealed via conditional-probability-distribution analysis. For neutral bosons, the total energy of the crystalline phase saturates in contrast to the GP solution, and its spatial extent becomes smaller than that of the GP condensate. For charged bosons, the total energy and dimensions approach the values of classical pointlike charges in their equilibrium configuration.

10.
Phys Rev Lett ; 89(17): 173403, 2002 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-12398670

RESUMEN

Experimental and theoretical studies of fission of doubly charged Li, Na, and K clusters in the low-fissility regime reveal the strong influence of electronic shell effects on the fission products. The electronic entropy controls the quenching of the shell effects and the competition between magic-fragment channels, leading to a transition from favored channels of higher mass symmetry to the asymmetric channel involving the trimer cation at elevated temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA