Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nucleic Acids Res ; 42(2): 1245-56, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24137004

RESUMEN

A transcriptional attenuation mechanism regulates expression of the bacterial tnaCAB operon. This mechanism requires ribosomal arrest induced by the regulatory nascent TnaC peptide in response to free L-tryptophan (L-Trp). In this study we demonstrate, using genetic and biochemical analyses, that in Escherichia coli, TnaC residue I19 and 23S rRNA nucleotide A2058 are essential for the ribosome's ability to sense free L-Trp. We show that the mutational change A2058U in 23S rRNA reduces the concentration dependence of L-Trp-mediated tna operon induction, whereas the TnaC I19L change suppresses this phenotype, restoring the sensitivity of the translating A2058U mutant ribosome to free L-Trp. These findings suggest that interactions between TnaC residue I19 and 23S rRNA nucleotide A2058 contribute to the creation of a regulatory L-Trp binding site within the translating ribosome.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Biosíntesis de Proteínas , ARN Ribosómico 23S/metabolismo , Ribosomas/metabolismo , Triptófano/metabolismo , Sitios de Unión , Proteínas de Escherichia coli/química , Mutación , Péptidos/química , Péptidos/metabolismo , ARN Ribosómico 23S/química , ARN de Transferencia de Triptófano/metabolismo , Triptofanasa/metabolismo
2.
J Bacteriol ; 192(6): 1518-26, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20061467

RESUMEN

Tryptophan, phenylalanine, tyrosine, and several other metabolites are all synthesized from a common precursor, chorismic acid. Since tryptophan is a product of an energetically expensive biosynthetic pathway, bacteria have developed sensing mechanisms to downregulate synthesis of the enzymes of tryptophan formation when synthesis of the amino acid is not needed. In Bacillus subtilis and some other Gram-positive bacteria, trp operon expression is regulated by two proteins, TRAP (the tryptophan-activated RNA binding protein) and AT (the anti-TRAP protein). TRAP is activated by bound tryptophan, and AT synthesis is increased upon accumulation of uncharged tRNA(Trp). Tryptophan-activated TRAP binds to trp operon leader RNA, generating a terminator structure that promotes transcription termination. AT binds to tryptophan-activated TRAP, inhibiting its RNA binding ability. In B. subtilis, AT synthesis is upregulated both transcriptionally and translationally in response to the accumulation of uncharged tRNA(Trp). In this paper, we focus on explaining the differences in organization and regulatory functions of the at operon's leader peptide-coding region, rtpLP, of B. subtilis and Bacillus licheniformis. Our objective was to correlate the greater growth sensitivity of B. licheniformis to tryptophan starvation with the spacing of the three Trp codons in its at operon leader peptide-coding region. Our findings suggest that the Trp codon location in rtpLP of B. licheniformis is designed to allow a mild charged-tRNA(Trp) deficiency to expose the Shine-Dalgarno sequence and start codon for the AT protein, leading to increased AT synthesis.


Asunto(s)
Bacillus/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Ácido 4-Aminobenzoico/metabolismo , Bacillus/efectos de los fármacos , Bacillus/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Mutación , Operón , Fenilalanina/metabolismo , Fenilalanina/farmacología , Reacción en Cadena de la Polimerasa , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Transcripción Genética , Triptófano/metabolismo , Triptófano/farmacología , Tirosina/metabolismo , Tirosina/farmacología
3.
Trends Genet ; 23(9): 422-6, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17555843

RESUMEN

The tryptophan biosynthetic operon has been widely used as a model system for studying transcription regulation. In Bacillus subtilis, the trp operon is primarily regulated by a tryptophan-activated RNA-binding protein, TRAP. Here we show that in many other Gram-positive species the trp operon is regulated differently, by tRNA(Trp) sensing by the RNA-based T-box mechanism, with T-boxes arranged in tandem. Our analyses reveal an apparent relationship between trp operon organization and the specific regulatory mechanism(s) used.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Bacterias Grampositivas/genética , Operón , Triptófano/biosíntesis , Biología Computacional , Evolución Molecular , Orden Génico , Modelos Biológicos , Filogenia , Triptófano/genética
4.
Curr Opin Microbiol ; 11(2): 78-86, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18374625

RESUMEN

Survival and replication of most bacteria require the ability to synthesize the amino acid L-tryptophan whenever it is not available from the environment. In this article we describe the genes, operons, proteins, and reactions involved in tryptophan biosynthesis in bacteria, and the mechanisms they use in regulating tryptophan formation. We show that although the reactions of tryptophan biosynthesis are essentially identical, gene organization varies among species--from whole-pathway operons to completely dispersed genes. We also show that the regulatory mechanisms used for these genes vary greatly. We address the question--what are some potential advantages of the gene organization and regulation variation associated with this conserved, important pathway?


Asunto(s)
Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Operón , Triptófano/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacterias Gramnegativas/enzimología , Bacterias Gramnegativas/genética , Bacterias Grampositivas/enzimología , Bacterias Grampositivas/genética , Filogenia
5.
J Bacteriol ; 191(11): 3445-50, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19329641

RESUMEN

Distinct features of the ribosomal peptide exit tunnel are known to be essential for recognition of specific amino acids of a nascent peptidyl-tRNA. Thus, a tryptophan residue at position 12 of the peptidyl-tRNA TnaC-tRNA(Pro) leads to the creation of a free tryptophan binding site within the ribosome at which bound tryptophan inhibits normal ribosome functions. The ribosomal processes that are inhibited are hydrolysis of TnaC-tRNA(Pro) by release factor 2 and peptidyl transfer of TnaC of TnaC-tRNA(Pro) to puromycin. These events are normally performed in the ribosomal peptidyl transferase center. In the present study, changes of 23S rRNA nucleotides in the 2585 region of the peptidyl transferase center, G2583A and U2584C, were observed to reduce maximum induction of tna operon expression by tryptophan in vivo without affecting the concentration of tryptophan necessary to obtain 50% induction. The growth rate of strains with ribosomes with either of these changes was not altered appreciably. In vitro analyses with mutant ribosomes with these changes showed that tryptophan was not as efficient in protecting TnaC-tRNA(Pro) from puromycin action as wild-type ribosomes. However, added tryptophan did prevent sparsomycin action as it normally does with wild-type ribosomes. These findings suggest that these two mutational changes act by reducing the ability of ribosome-bound tryptophan to inhibit peptidyl transferase activity rather than by reducing the ability of the ribosome to bind tryptophan. Thus, the present study identifies specific nucleotides within the ribosomal peptidyl transferase center that appear to be essential for effective tryptophan induction of tna operon expression.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Operón/genética , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , ARN Ribosómico 23S/metabolismo , Triptofanasa/genética , Sitios de Unión/fisiología , Huella de ADN , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Modelos Biológicos , Peptidil Transferasas/química , Unión Proteica/fisiología , Puromicina/metabolismo , ARN Ribosómico 23S/química , ARN Ribosómico 23S/genética , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo , Esparsomicina/metabolismo , Triptófano/química , Triptófano/metabolismo
6.
J Bacteriol ; 191(22): 7001-6, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19767424

RESUMEN

Expression of the tna operon of Escherichia coli and of Proteus vulgaris is induced by L-tryptophan. In E. coli, tryptophan action is dependent on the presence of several critical residues (underlined) in the newly synthesized TnaC leader peptide, WFNIDXXL/IXXXXP. These residues are conserved in TnaC of P. vulgaris and of other bacterial species. TnaC of P. vulgaris has one additional feature, distinguishing it from TnaC of E. coli; it contains two C-terminal lysine residues following the conserved proline residue. In the present study, we investigated L-tryptophan induction of the P. vulgaris tna operon, transferred on a plasmid into E. coli. Induction was shown to be L-tryptophan dependent; however, the range of induction was less than that observed for the E. coli tna operon. We compared the genetic organization of both operons and predicted similar folding patterns for their respective leader mRNA segments. However, additional analyses revealed that L-tryptophan action in the P. vulgaris tna operon involves inhibition of TnaC elongation, following addition of proline, rather than inhibition of leader peptide termination. Our findings also establish that the conserved residues in TnaC of P. vulgaris are essential for L-tryptophan induction, and for inhibition of peptide elongation. TnaC synthesis is thus an excellent model system for studies of regulation of both peptide termination and peptide elongation, and for studies of ribosome recognition of the features of a nascent peptide.


Asunto(s)
Operón/fisiología , Señales de Clasificación de Proteína/genética , Proteus vulgaris/efectos de los fármacos , Proteus vulgaris/metabolismo , Triptófano/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/genética , Modelos Biológicos , Operón/genética , Proteus vulgaris/genética
7.
Genetics ; 178(1): 171-83, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18202366

RESUMEN

Transcription of the Neurospora crassa gene con-10 is induced during conidiation and following exposure of vegetative mycelia to light, but light activation is transient due to photoadaptation. We describe mutational analyses of photoadaptation using a N. crassa strain bearing a translational fusion of con-10, including its regulatory region, to a selectable bacterial gene conferring hygromycin resistance (hph). Growth of this strain was sensitive to hygromycin, upon continuous culture in the light. Five mutants were isolated that were resistant to hygromycin when cultured under constant light. Three mutant strains displayed elevated, sustained accumulation of con-10::hph mRNA during continued light exposure, suggesting that they bear mutations that reduce or eliminate the presumed light-dependent repression mechanism that blocks con-10 transcription upon prolonged illumination. These mutations altered photoadaptation for only a specific group of genes (con-10 and con-6), suggesting that regulation of photoadaptation is relatively gene specific. The mutations increased light-dependent mRNA accumulation for genes al-1, al-2, and al-3, each required for carotenoid biosynthesis, resulting in a threefold increase in carotenoid accumulation following continuous light exposure. Identification of the altered gene or genes in these mutants may reveal novel proteins that participate in light regulation of gene transcription in fungi.


Asunto(s)
Regulación Fúngica de la Expresión Génica/efectos de la radiación , Luz , Mutación/genética , Neurospora crassa/genética , Neurospora crassa/efectos de la radiación , Selección Genética , Transcripción Genética/efectos de la radiación , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/efectos de la radiación , Carotenoides/biosíntesis , Cinamatos/farmacología , Farmacorresistencia Microbiana/efectos de la radiación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Higromicina B/análogos & derivados , Higromicina B/farmacología , Micelio/efectos de los fármacos , Micelio/metabolismo , Micelio/efectos de la radiación , Neurospora crassa/citología , Neurospora crassa/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transcripción Genética/efectos de los fármacos
8.
J Bacteriol ; 190(14): 4791-7, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18424524

RESUMEN

In Escherichia coli, interactions between the nascent TnaC-tRNA(Pro) peptidyl-tRNA and the translating ribosome create a tryptophan binding site in the ribosome where bound tryptophan inhibits TnaC-tRNA(Pro) cleavage. This inhibition delays ribosome release, thereby inhibiting Rho factor binding and action, resulting in increased tna operon transcription. Replacing Trp12 of TnaC with any other amino acid residue was previously shown to prevent tryptophan binding and induction of tna operon expression. Genome-wide comparisons of TnaC amino acid sequences identify Asp16 and Pro24, as well as Trp12, as highly conserved TnaC residues. Replacing these residues with other residues was previously shown to influence tryptophan induction of tna operon expression. In this study, in vitro analyses were performed to examine the potential roles of Asp16 and Pro24 in tna operon induction. Replacing Asp16 or Pro24 of TnaC of E. coli with other amino acids established that these residues are essential for free tryptophan binding and inhibition of TnaC-tRNA(Pro) cleavage at the peptidyl transferase center. Asp16 and Pro24 are in fact located in spatial positions corresponding to critical residues of AAP, another ribosome regulatory peptide. Sparsomycin-methylation protection studies further suggested that segments of 23S RNA were arranged differently in ribosomes bearing TnaCs with either the Asp16Ala or the Pro24Ala change. Thus, features of the amino acid sequence of TnaC of the nascent TnaC-tRNA(Pro) peptidyl-tRNA, in addition to the presence of Trp12, are necessary for the nascent peptide to create a tryptophan binding/inhibition site in the translating ribosome.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Prolina/metabolismo , Ribosomas/metabolismo , Triptófano/metabolismo , Sustitución de Aminoácidos/genética , Asparagina/genética , Secuencia Conservada , Proteínas de Escherichia coli/genética , Orden Génico , Mutagénesis Sitio-Dirigida , Operón , Prolina/genética , Inhibidores de la Síntesis de la Proteína/farmacología , Puromicina/farmacología , Aminoacil-ARN de Transferencia/genética , Factor Rho/metabolismo , Homología de Secuencia de Aminoácido , Esparsomicina/farmacología
9.
J Bacteriol ; 190(6): 1937-45, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18178730

RESUMEN

The Bacillus subtilis anti-TRAP protein regulates the ability of the tryptophan-activated TRAP protein to bind to trp operon leader RNA and promote transcription termination. AT synthesis is regulated both transcriptionally and translationally by uncharged tRNA(Trp). In this study, we examined the roles of AT synthesis and tRNA(Trp) charging in mediating physiological responses to tryptophan starvation. Adding excess phenylalanine to wild-type cultures reduced the charged tRNA(Trp) level from 80% to 40%; the charged level decreased further, to 25%, in an AT-deficient mutant. Adding tryptophan with phenylalanine increased the charged tRNA(Trp) level, implying that phenylalanine, when added alone, reduces the availability of tryptophan for tRNA(Trp) charging. Changes in the charged tRNA(Trp) level observed during growth with added phenylalanine were associated with increased transcription of the genes of tryptophan metabolism. Nutritional shift experiments, from a medium containing tryptophan to a medium with phenylalanine and tyrosine, showed that wild-type cultures gradually reduced their charged tRNA(Trp) level. When this shift was performed with an AT-deficient mutant, the charged tRNA(Trp) level decreased even further. Growth rates for wild-type and mutant strains deficient in AT or TRAP or that overproduce AT were compared in various media. A lack of TRAP or overproduction of AT resulted in phenylalanine being required for growth. These findings reveal the importance of AT in maintaining a balance between the synthesis of tryptophan versus the synthesis of phenylalanine, with the level of charged tRNA(Trp) acting as the crucial signal regulating AT production.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/fisiología , Operón/genética , ARN de Transferencia de Triptófano/genética , Proteínas de Unión al ARN/fisiología , Factores de Transcripción/fisiología , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Medios de Cultivo/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Cinética , Modelos Biológicos , Mutación , Fenilalanina/metabolismo , Fenilalanina/farmacología , ARN de Transferencia de Triptófano/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Triptófano/biosíntesis , Triptófano/farmacología , Tirosina/metabolismo , Tirosina/farmacología
10.
Trends Genet ; 21(5): 260-4, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15851059

RESUMEN

We employed computational analyses to assess the conservation of sequence elements that are believed to be essential for the various transcription-attenuation (termination) mechanisms that are used to regulate expression of families of orthologous genes in bacteria. We searched the upstream sequence of every predicted transcription unit for a transcription attenuator. These were then clustered by the orthology relationships of the nearby structural genes. Many gene families regulated by transcription attenuation were found to be adjacent to a regulatory region that had a binding site for a specific protein, tRNA or small metabolite. Using our methodology, we predict that at least 80 different clusters of orthologous groups (COGs) are significantly regulated by transcription attenuation.


Asunto(s)
Bacterias/genética , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica , Mitocondrias/metabolismo , Transcripción Genética , Secuencia Conservada , Complejo IV de Transporte de Electrones/biosíntesis , Genes
11.
Trends Genet ; 20(8): 367-74, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15262409

RESUMEN

Escherichia coli and Bacillus subtilis use different mechanisms of sensing and responding to tryptophan and uncharged tRNA(Trp) as regulatory signals. In E. coli, tryptophan activates a repressor that binds to the trp promoter- operator, inhibiting transcription initiation. In B. subtilis, tryptophan activates an RNA-binding protein, TRAP, which binds to the trp operon leader RNA, causing transcription termination. In E. coli uncharged tRNA(Trp) accumulation stalls the ribosome attempting translation of tandem Trp codons in the leader-peptide coding region of the operon. This stalling permits the formation of an RNA antiterminator structure, preventing transcription termination. In B. subtilis uncharged tRNA(Trp) accumulation activates transcription and translation of the at operon. AT protein inhibits tryptophan-activated TRAP, thereby preventing TRAP-mediated transcription termination. These differences might reflect the unique organizational features of the respective trp operons and their ancestry.


Asunto(s)
Bacillus subtilis/genética , Escherichia coli/genética , Operón/genética , ARN de Transferencia/genética , Triptófano/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Regiones Promotoras Genéticas/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Regiones Terminadoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Triptófano/genética
15.
J Vis Exp ; (48)2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21403627

RESUMEN

Recently, structural and biochemical studies have detailed many of the molecular events that occur in the ribosome during inhibition of protein synthesis by antibiotics and during nascent polypeptide synthesis. Some of these antibiotics, and regulatory nascent polypeptides mostly in the form of peptidyl-tRNAs, inhibit either peptide bond formation or translation termination. These inhibitory events can stop the movement of the ribosome, a phenomenon termed "translational arrest". Translation arrest induced by either an antibiotic or a nascent polypeptide has been shown to regulate the expression of genes involved in diverse cellular functions such as cell growth, antibiotic resistance, protein translocation and cell metabolism. Knowledge of how antibiotics and regulatory nascent polypeptides alter ribosome function is essential if we are to understand the complete role of the ribosome in translation, in every organism. Here, we describe a simple methodology that can be used to purify, exclusively, for analysis, those ribosomes translating a specific mRNA and containing a specific peptidyl-tRNA. This procedure is based on selective isolation of translating ribosomes bound to a biotin-labeled mRNA. These translational complexes are separated from other ribosomes in the same mixture, using streptavidin paramagnetic beads (SMB) and a magnetic field (MF). Biotin-labeled mRNAs are synthesized by run-off transcription assays using as templates PCR-generated DNA fragments that contain T7 transcriptional promoters. T7 RNA polymerase incorporates biotin-16-UMP from biotin-UTP; under our conditions approximately ten biotin-16-UMP molecules are incorporated in a 600 nt mRNA with a 25% UMP content. These biotin-labeled mRNAs are then isolated, and used in in vitro translation assays performed with release factor 2 (RF2)-depleted cell-free extracts obtained from Escherichia coli strains containing wild type or mutant ribosomes. Ribosomes translating the biotin-labeled mRNA sequences are stalled at the stop codon region, due to the absence of the RF2 protein, which normally accomplishes translation termination. Stalled ribosomes containing the newly synthesized peptidyl-tRNA are isolated and removed from the translation reactions using SMB and an MF. These beads only bind biotin-containing messages. The isolated, translational complexes, can be used to analyze the structural and functional features of wild type or mutant ribosomal components, or peptidyl-tRNA sequences, as well as determining ribosome interaction with antibiotics or other molecular factors. To examine the function of these isolated ribosome complexes, peptidyl-transferase assays can be performed in the presence of the antibiotic puromycin. To study structural changes in translational complexes, well established procedures can be used, such as i) crosslinking to specific amino acids and/or ii) alkylation protection assays.


Asunto(s)
Aminoacil-ARN de Transferencia/química , Ribosomas/química , Secuencia de Bases , Biotina/química , Biotina/metabolismo , Datos de Secuencia Molecular , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Puromicina/farmacología , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
16.
Curr Opin Microbiol ; 14(2): 160-6, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21342782

RESUMEN

Ribosomes catalyze protein synthesis using transfer RNAs and auxiliary proteins. Historically, ribosomes have been considered nonspecific translational machines, having no regulatory functions. However, a new class of regulatory mechanisms has been discovered that is based on interactions occurring within the ribosomal peptide exit tunnel that result in ribosome stalling during translation of an appropriate mRNA segment. These discoveries reveal an unexpectedly dynamic role ribosomes play in regulating their own activity. By using nascent leader peptides in combination with bound specific amino acids or antibiotics, ribosome functions can be altered significantly resulting in regulated expression of downstream coding regions. This review summarizes relevant findings in recent articles and outlines our current understanding of nascent peptide-induced ribosome stalling in regulating gene expression.


Asunto(s)
Regulación de la Expresión Génica , Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo
17.
Nat Biotechnol ; 29(2): 164-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21240267

RESUMEN

Small-molecule regulation of gene expression is intrinsic to cellular function and indispensable to the construction of new biological sensing, control and expression systems. However, there are currently only a handful of strategies for engineering such regulatory components and fewer still that can give rise to an arbitrarily large set of inducible systems whose members respond to different small molecules, display uniformity and modularity in their mechanisms of regulation, and combine to actuate universal logics. Here we present an approach for small-molecule regulation of transcription based on the combination of cis-regulatory leader-peptide elements with genetically encoded unnatural amino acids (amino acids that have been artificially added to the genetic code). In our system, any genetically encoded unnatural amino acid (UAA) can be used as a small-molecule attenuator or activator of gene transcription, and the logics intrinsic to the network defined by expanded genetic codes can be actuated.


Asunto(s)
Aminoácidos/metabolismo , Codón , Elementos Reguladores de la Transcripción , Transcripción Genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Modelos Genéticos , Espectrometría de Fluorescencia
20.
Microbiol Mol Biol Rev ; 73(1): 36-61, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19258532

RESUMEN

The T-box mechanism is a common regulatory strategy used for modulating the expression of genes of amino acid metabolism-related operons in gram-positive bacteria, especially members of the Firmicutes. T-box regulation is usually based on a transcription attenuation mechanism in which an interaction between a specific uncharged tRNA and the 5' region of the transcript stabilizes an antiterminator structure in preference to a terminator structure, thereby preventing transcription termination. Although single T-box regulatory elements are common, double or triple T-box arrangements are also observed, expanding the regulatory range of these elements. In the present study, we predict the functional implications of T-box regulation in genes encoding aminoacyl-tRNA synthetases, proteins of amino acid biosynthetic pathways, transporters, and regulatory proteins. We also consider the global impact of the use of this regulatory mechanism on cell physiology. Novel biochemical relationships between regulated genes and their corresponding metabolic pathways were revealed. Some of the genes identified, such as the quorum-sensing gene luxS, in members of the Lactobacillaceae were not previously predicted to be regulated by the T-box mechanism. Our analyses also predict an imbalance in tRNA sensing during the regulation of operons containing multiple aminoacyl-tRNA synthetase genes or biosynthetic genes involved in pathways common to more than one amino acid. Based on the distribution of T-box regulatory elements, we propose that this regulatory mechanism originated in a common ancestor of members of the Firmicutes, Chloroflexi, Deinococcus-Thermus group, and Actinobacteria and was transferred into the Deltaproteobacteria by horizontal gene transfer.


Asunto(s)
Aminoácidos/genética , Regulación Bacteriana de la Expresión Génica , Bacterias Grampositivas/genética , Regulón , Proteínas Represoras/metabolismo , Proteínas de Dominio T Box/metabolismo , Aminoacil-ARNt Sintetasas/genética , Deltaproteobacteria/genética , Evolución Molecular , Transferencia de Gen Horizontal , Bacterias Grampositivas/metabolismo , Operón , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/genética , Proteínas de Dominio T Box/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA