Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Luminescence ; 36(3): 621-630, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33171522

RESUMEN

Cadmium selenide (CdSe) quantum dots (QDs) were biosynthesized rapidly in 18 h in Bacillus licheniformis ATCC 11946 (B. licheniformis); this process benefited from the cellular machinery of bacteria metal metabolism, in which inorganic Na2 SeO3 and CdCl2 were chosen as raw materials to produce high quality CdSe QDs by a designed two-step protocol. Research outcomes demonstrated that the purified CdSe QDs possessed maximum fluorescence intensities at weak alkalinity solutions and had good fluorescence stabilities at 4°C as well as at room temperature after standing for 1 week. Glutathione (GSH) concentration and superoxide dismutase (SOD) content, both of which were reported to be greatly related to biosynthetic activities in some bacterial matrices, were monitored during the biosynthetic process in B. licheniformis. Bacterial resistance research further showed that the change in rates in bacterial inhibition zone diameter to seven different antibiotics was less than 9% after B. licheniformis was used to manufacture CdSe QDs, showing a relative lower environmental risk in short-term heavy metal exposure.


Asunto(s)
Bacillus licheniformis , Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Antibacterianos , Colorantes Fluorescentes
2.
Microbiol Resour Announc ; 9(49)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33272984

RESUMEN

Serratia marcescens strain ZZCCN01 was isolated from the cardiac blood of a dead beef cow with a lung infection and a foam-like secretion from the nostril. Here, we introduce the 5.1-Mb draft genome sequence, which comprises 105 scaffolds, and the corresponding annotation.

3.
Enzyme Microb Technol ; 127: 50-57, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31088616

RESUMEN

Macrophages eliminate and destroy invading bacteria and contaminants by engulfing them or secreting cytokines that trigger downstream immune responses. Consequently, impairment of the phagocytic functions of macrophages and/or suppressing their cytokine secretion are dangerous to organisms that rely on immune protection. Accordingly, exposure to environmental nanoparticles (NPs) that display immunomodulatory properties are serious. In this work, two types of NPs, i.e., mild-toxicity CuInS2 NPs and high-toxicity CdTe NPs, were used to evaluate the effects of NP exposure for macrophages. Following incubation for 24 h, THP-1-derived macrophage viability was assessed using an MTT method after exposing the THP-1 cells to different concentrations of CuInS2 or CdTe NPs. Phagocytosis assays demonstrated that both CuInS2 and CdTe NPs impair phagocytic activity toward Staphylococcus aureus (S. aureus). After pretreatment with CuInS2 and CdTe NPs at 4 µmol/L, THP-1 macrophages exhibited decreases in phagocytic ratio from ca. 32.9% to ca. 18.5% and 18.7%, respectively. Since the zeta potentials of intact and weathered CuInS2 NPs were distributed over a wide range from positive to negative, large quantities of intact and weathered CuInS2 NPs bore sufficient positive charge on their surfaces to induce membrane depolarization, thus theoretically providing electrostatic forces between S. aureus and THP-1, which could induce downstream intracellular events that increase phagocytosis. However, real time polymerase chain reaction arrays revealed that transcription of the pro-inflammatory factors IL-1ß, IL-6, and TNF-α decreased while that of the anti-inflammatory factor IL-10 increased after treatment with CuInS2 NPs. Furthermore, transcription of TNF-α decreased while IL-10 increased after treatment with CdTe NPs. Thus, both kinds of NPs inhibited phagocytosis of S. aureus by THP-1 to some extent, confirming that immunosuppression can occur when macrophages are exposed to environmental NPs.


Asunto(s)
Citocinas/metabolismo , Factores Inmunológicos/metabolismo , Macrófagos/efectos de los fármacos , Nanopartículas/metabolismo , Fagocitosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Factores Inmunológicos/química , Macrófagos/metabolismo , Nanopartículas/química , Staphylococcus aureus/inmunología , Células THP-1
4.
RSC Adv ; 10(1): 260-270, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35492559

RESUMEN

A simple biological strategy to couple intracellular irrelated biochemical reactions of staphylococcus aureus CMCC 26003 (S. aureus) with inorganic metal ions to synthesize cadmium selenide quantum dots (CdSe QDs) was demonstrated. Correspondingly, S. aureus as living matrices are internally generated and labeled with fluorescent QDs by the smart strategy. Several key factors in the process of biosynthesis were systematically evaluated. At the same time, ultraviolet-visible (UV-Vis), photo-luminescence (PL), inverted fluorescence microscopy and transmission electron microscopy (TEM) were utilized to study the characters of the as produced CdSe QDs. In addition, cytotoxicity and photostability of the QDs containing bacteria were also tested and evaluated as a whole. The results showed that intracellular CdSe nanocrystals had successfully formed in S. aureus living cells, which were less toxic, highly fluorescent and photostable. These fluorescent S. aureus bacteria were next applied as invading pathogens as well as fluorescent bioprobes for exploring the phagocytic behavior of THP-1-derived macrophage. Results proved that internal CdSe QDs labeling had no significantly adverse effects compared with the kind of infection reference, fluorescein isothiocyanate (FITC) stained S. aureus pathogen. Assuredly, the methods presented here provide researchers with a useful option to analyze the behavior of S. aureus as a type of infectious pathogen, which would also help understand the complex interplay between host cells and the invading bacteria on molecular level.

5.
Enzyme Microb Technol ; 119: 37-44, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30243385

RESUMEN

Bacillus amyloliquefaciens containing intracellularly biosynthesized cadmium selenide (CdSe) quantum dots (QDs) was used as a fluorescent bioprobe. Several parameters in the QD biosynthesis process were systematically optimized. The optimized protocol for producing high-quality CdSe QDs in B. amyloliquefaciens features mild synthetic conditions, good reproducibility, short reaction time and high yield. This process shows promise for the mass production of QDs by bacterial matrices. The resultant fluorescent B. amyloliquefaciens containing intracellular CdSe QDs was used as a bioprobe for the simple detection of copper (II) ions in blood plasma. The selective permeability of the bacterial cell membrane along with the protection provided by a protein envelope on the QD surface prevented interference by other components of blood plasma, resulting in the accurate determination of Cu2+. Using the copper addition method, the content of Cu2+ in human blood plasma samples was determined to be 15.6-18.5 µmol/L, consistent with atomic absorption spectroscopy results. The technique developed here shows potential for the simple determination of Cu2+ in plasma with excellent selectivity and good sensitivity.


Asunto(s)
Bacillus amyloliquefaciens/metabolismo , Compuestos de Cadmio/química , Cobre/sangre , Colorantes Fluorescentes/química , Puntos Cuánticos , Compuestos de Selenio/química , Adulto , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA