Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 73(8): 137, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833034

RESUMEN

Tumor-infiltrating lymphocyte (TIL) deficiency is the most conspicuous obstacle to limit the cancer immunotherapy. Immune checkpoint inhibitors (ICIs), such as anti-PD-1 antibody, have achieved great success in clinical practice. However, due to the limitation of response rates of ICIs, some patients fail to benefit from monotherapy. Thus, novel combination therapy that could improve the response rates emerges as new strategies for cancer treatment. Here, we reported that the natural product rocaglamide (RocA) increased tumor-infiltrating T cells and promoted Th17 differentiation of CD4+ TILs. Despite RocA monotherapy upregulated PD-1 expression of TILs, which was considered as the consequence of T cell activation, combining RocA with anti-PD-1 antibody significantly downregulated the expression of PD-1 and promoted proliferation of TILs. Taken together, these findings demonstrated that RocA could fuel the T cell anti-tumor immunity and revealed the remarkable potential of RocA as a therapeutic candidate when combining with the ICIs.


Asunto(s)
Benzofuranos , Diferenciación Celular , Inhibidores de Puntos de Control Inmunológico , Linfocitos Infiltrantes de Tumor , Receptor de Muerte Celular Programada 1 , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Animales , Benzofuranos/farmacología , Benzofuranos/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Humanos , Diferenciación Celular/efectos de los fármacos , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Ratones Endogámicos C57BL , Femenino , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Línea Celular Tumoral
2.
Chemistry ; 30(27): e202304118, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38433408

RESUMEN

New chiral ligands could be obtained by introducing proline moieties and imidazoline moieties to binaphthyl skeletons. The chiral ligands exhibited balanced rigidity and flexibility which could allow the change of the conformations during the reactions on one hand, and could provide sufficient asymmetric induction on the other. The proline moiety could act as a linker connecting the binaphthyl skeletons and the imidazoline moieties as well as a coordinating group for the central metal, and the electronic and steric properties of the imidazoline groups could be carefully fine-tuned by the use of different substituents. In the presence of Cu(II) catalyst bearing such chiral ligands, aza-Friedel-Crafts reaction of 1-naphthols and electron-rich phenols with isatin-derived ketimines provided the desired products with good to excellent yields and up to 99 % ee. The reactions showed good scalability, and excellent ee could still be obtained when the reaction was carried out in gram-scale.

3.
J Biomed Sci ; 31(1): 62, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862973

RESUMEN

BACKGROUND: Ovarian carcinoma (OC) is a fatal malignancy, with most patients experiencing recurrence and resistance to chemotherapy. In contrast to hematogenous metastasizing tumors, ovarian cancer cells disseminate within the peritoneal cavity, especially the omentum. Previously, we reported omental crown-like structure (CLS) number is associated with poor prognosis of advanced-stage OC. CLS that have pathologic features of a dead or dying adipocyte was surrounded by several macrophages is well known a histologic hallmark for inflammatory adipose tissue. In this study, we attempted to clarify the interaction between metastatic ovarian cancer cells and omental CLS, and to formulate a therapeutic strategy for advanced-stage ovarian cancer. METHODS: A three-cell (including OC cells, adipocytes and macrophages) coculture model was established to mimic the omental tumor microenvironment (TME) of ovarian cancer. Caspase-1 activity, ATP and free fatty acids (FFA) levels were detected by commercial kits. An adipocyte organoid model was established to assess macrophages migration and infiltration. In vitro and in vivo experiments were performed for functional assays and therapeutic effect evaluations. Clinical OC tissue samples were collected for immunochemistry stain and statistics analysis. RESULTS: In three-cell coculture model, OC cells-derived IL-6 and IL-8 could induce the occurrence of pyroptosis in omental adipocytes. The pyroptotic adipocytes release ATP to increase macrophage infiltration, release FFA into TME, uptake by OC cells to increase chemoresistance. From OC tumor samples study, we demonstrated patients with high gasdermin D (GSDMD) expression in omental adipocytes is highly correlated with chemoresistance and poor outcome in advanced-stage OC. In animal model, by pyroptosis inhibitor, DSF, effectively retarded tumor growth and prolonged mice survival. CONCLUSIONS: Omental adipocyte pyroptosis may contribute the chemoresistance in advanced stage OC. Omental adipocytes could release FFA and ATP through the GSDMD-mediate pyroptosis to induce chemoresistance and macrophages infiltration resulting the poor prognosis in advanced-stage OC. Inhibition of adipocyte pyroptosis may be a potential therapeutic modality in advanced-stage OC with omentum metastasis.


Asunto(s)
Adipocitos , Resistencia a Antineoplásicos , Epiplón , Neoplasias Ováricas , Piroptosis , Microambiente Tumoral , Femenino , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Epiplón/metabolismo , Humanos , Adipocitos/metabolismo , Ratones , Animales , Línea Celular Tumoral , Técnicas de Cocultivo
4.
Langmuir ; 40(6): 3024-3034, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38295287

RESUMEN

A monolithic catalyst was fabricated through an emulsion-templating method, postpolymerization modification, and in situ loading of active constituents. To achieve a high specific surface area, divinylbenzene (DVB) was solely employed as the monomer, while the porous structure was adjusted with the porogen content and the types of initiators. Then, anchor points were introduced on the pore wall through nitration and amination of the polymeric scaffold. Using a controlled "silver mirror reaction", monolithic catalysts were obtained after loading of silver nanoparticles (Ag NPs), which was verified from morphological and crystallinity characteristics. The catalytic performance of the resultant monolithic catalyst was determined with the model reduction of 4-nitrophenol (4-NP). In static catalysis, the monolithic catalyst was proved to have a reactively high apparent rate constant and a good reusability. Furthermore, a flow reactor was fabricated with the monolithic catalyst, showing a high efficiency and long-term durability for the continuous reduction of 4-NP. This work broadened the adjustment of porous structures and the subsequent application for emulsion-templated monoliths.

5.
Int J Med Sci ; 21(8): 1438-1446, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903927

RESUMEN

Background: Exploring potential biomarkers for predicting clinical outcomes and developing targeted therapies for acute myeloid leukemia (AML) is of utmost importance. This study aimed to investigate the expression pattern of the thioredoxin-interacting protein (TXNIP)/nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) pathway and its role in the prognosis of AML patients. Methods: In this study, we examined the prognostic value of TXNIP/NLRP3 pathway in AML patients using microarray data from Gene Expression Omnibus (GEO) and transcriptome data from the Cancer Genome Atlas (TCGA) to develop a prognostic model and validated the results by quantitative real-time PCR (qRT-PCR) in a validation cohort of 26 AML patients and 18 healthy individuals from Jinan University (JNU) database. Results: Analysis of the GSE13159 database revealed that TXNIP, interleukin 1 beta (IL1B) within the TXNIP/NLRP3 pathway were significantly upregulated and caspase1 (CASP1) was downregulated in AML patients (TXNIP, P = 0.031; IL1B, P = 0.042; CASP1, P = 0.038). Compared to high NLRP3 expression, AML patients with low NLRP3 expression had a longer overall survival (OS) in the GSE12417 dataset (P = 0.004). Moreover, both the training and validation results indicated that lower TXNIP, NLRP3, and IL1B expression were associated with favorable prognosis (GSE12417, P = 0.009; TCGA, P = 0.050; JNU, P = 0.026). According to the receiver operating characteristic curve analysis, this model demonstrated a sensitivity of 84% for predicting three-year survival. These data might provide novel predictors for AML outcome and direction for further investigation of the possibility of using TXNIP/NLRP3/IL1B genes in novel targeted therapies for AML.


Asunto(s)
Biomarcadores de Tumor , Proteínas Portadoras , Inflamasomas , Interleucina-1beta , Leucemia Mieloide Aguda , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Femenino , Masculino , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Inflamasomas/metabolismo , Inflamasomas/genética , Transducción de Señal/genética , Adulto , Anciano , Regulación Leucémica de la Expresión Génica , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
6.
J Formos Med Assoc ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38336508

RESUMEN

BACKGROUND: /Purpose: Acute appendicitis (AA) stands as the most prevalent cause of acute abdominal pain among children. The potential for morbidity escalates significantly when uncomplicated appendicitis (UA) progresses to complicated appendicitis (CA), which can encompass gangrenous, necrotic, or perforated appendicitis. Consequently, establishing an early and accurate diagnosis of AA, and effectively differentiating CA from UA, becomes paramount. This study explores the diagnostic utility of various blood biomarkers for distinguishing CA from UA in pediatric patients. METHODS: We conducted a retrospective review of medical records pertaining to pediatric patients who underwent surgery for AA. Patients were categorized as either having UA or CA based on histopathological examination of the appendix. The data collected and analyzed included demographic information, white blood cell (WBC) count, neutrophil proportion, lymphocyte proportion, neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), and C-reactive protein (CRP) levels upon admission. RESULTS: Among the 192 pediatric patients who underwent surgery for AA, 150 were diagnosed with UA, while 42 were diagnosed with CA. The CA group exhibited significantly higher neutrophil proportions, NLRs, PLRs, and CRP levels, alongside lower lymphocyte proportions (all p < 0.01) compared to the UA group. Receiver operating characteristic (ROC) curve analysis disclosed that CRP exhibited the highest specificity, sensitivity, and positive and negative predictive values for predicting CA. CONCLUSION: CRP emerges as a valuable biomarker for differentiating complicated appendicitis from uncomplicated appendicitis.

7.
Molecules ; 29(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38930933

RESUMEN

The rapid development of the battery industry has brought about a large amount of waste battery pollution. How to realize the high-value utilization of waste batteries is an urgent problem to be solved. Herein, cobalt and titanium compounds (LTCO) were firstly recovered from spent lithium-ion batteries (LIBs) using the carbon thermal reduction approach, and plasmonic attapulgite/Co(Ti)Ox (H-ATP/Co(Ti)Ox) nanocomposites were prepared by the microwave hydrothermal technique. H-ATP had a large specific surface area and enough active sites to capture CO2 molecules. The biochar not only reduced the spinel phase of waste LIBs into metal oxides including Co3O4 and TiO2 but also increased the separation and transmission of the carriers, thereby accelerating the adsorption and reduction of CO2. In addition, H-ATP/Co(Ti)Ox exhibited a localized surface plasmon resonance effect (LSPR) in the visible to near-infrared region and released high-energy hot electrons, enhancing the surface temperature of the catalyst and further improving the catalytic reduction of CO2 with a high CO yield of 14.7 µmol·g-1·h-1. The current work demonstrates the potential for CO2 reduction by taking advantage of natural mineral and spent batteries.

8.
Langmuir ; 39(28): 9865-9874, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37395369

RESUMEN

A series of Janus hemispheres with a patchy hemispherical surface and a flat undersurface were synthesized through controlled polymerization-induced phase separation within emulsified wax droplets. The hemispherical shape was generated through the polymerization of styrene within wax droplets, followed by the grafting of hydrophilic polymers on the exposed surface. Then, the patchy hemispherical surface was achieved after introducing the hydrophobic acrylate monomers within wax droplets and controlling the polymerization-induced phase separation. The morphological evolution of patches was recorded via the reaction time, followed by their morphological regulation through the type, feeding amount, and cross-linking degree of acrylate monomers. A functional monomer, vinyl benzyl chloride (VBC), was also used to copolymerize the patches for grafting a zwitterionic polymer via surface-initiated atom transfer radical polymerization (SI-ATRP). The as-obtained Janus hemispheres were employed to fabricate robust coatings with wettability tuned from superhydrophobicity to underwater superoleophobicity by the grafted zwitterionic polymers.

9.
J Org Chem ; 88(21): 14928-14944, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37874252

RESUMEN

This paper describes the design and application of new binaphthyl-proline-based chiral ligands bearing imidazoline functional groups. These chiral ligands incorporate the advantages of both the binaphthyl and proline skeletons, they are featured with regulatable electronic and steric properties for the imidazoline functional groups, and form chiral complexes with different metal salts such as cuprous acetate. In the presence of an appropriate amount of a chiral catalyst, enantioselective conjugate addition of 4-hydroxycoumarin or related nucleophiles to different ß,γ-unsaturated α-ketoesters proceeded readily, giving the desired products in high yield (up to 99%) and excellent enantiomeric excess (up to 99%).

10.
J Org Chem ; 88(5): 3046-3053, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791262

RESUMEN

New Cu(I) catalysts are effective in enantioselective Friedel-Crafts alkylation of a variety of indoles with different ß,γ-unsaturated α-ketoesters. A control study shows that such a catalyst system is less sensitive to air, and the reactions can be carried out without special cares such as glovebox operation or moisture/oxygen-free conditions. Preliminary computation results suggest that there exists π-π stacking between the substrate and the catalyst, and such an interaction seems to play a role in stabilizing the reaction intermediate and enhancing the stereoselectivity of the reactions. The desired products can be obtained in up to 98% yield at 99% enantiomeric excess. The same high enantioselectivity can be observed when the reaction is carried in a gram scale, indicating a good scalability of the catalyst system in enantioselective Friedel-Crafts alkylation of different indoles with ß,γ-unsaturated α-ketoesters.

11.
J Org Chem ; 88(20): 14345-14350, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37791977

RESUMEN

The copper(II)-catalyzed enantioselective aza-Friedel-Crafts reaction of indoles with isatin-derived N-Boc-ketimines was developed by using tunable chiral O-N-N tridentate ligands derived from BINOL and proline. In general, the reaction afforded chiral 3-indolyl-3-aminooxindoles under mild conditions in high yields (83-97%) with excellent ee (69-99%).

12.
J Org Chem ; 88(12): 7651-7659, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-36106472

RESUMEN

Chiral O-N-N tridentate ligands were designed from proline and BINOL. Their design strategy and performance were evaluated using a copper(II)-catalyzed asymmetric Henry reaction as a model. The desired ß-nitroalcohols were obtained in up to 94% ee's. Preliminary results suggested that the stereofacial selection of the reactions was mainly controlled by the chiral diamine moiety derived from proline, and matching of the central and axial chiralities was essential for the high stereoselectivity of the reaction. Enantioswitching was observed when an appropriate substituent was introduced to the binaphthyl group. Si-selections were found in reactions using 2a without 3-substituents as chiral ligand, and Re-selections were found with the same high enantioselectivities when 2i bearing the 3-trifluoromethyl group was used as the chiral ligand.


Asunto(s)
Cobre , Prolina , Estructura Molecular , Ligandos , Estereoisomerismo , Catálisis
13.
Cell Biol Int ; 47(2): 383-393, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36480792

RESUMEN

NUAK1 is a serine/threonine kinase that has been shown to be associated with poor prognosis in several cancers. Although NUAK1 is frequently overexpressed at the transcript level in hepatocellular carcinoma (HCC), the actual role of NUAK1 and the mechanism of its overexpression in HCC has yet to be reported. In the present study, we found that NUAK1 expression was significantly increased in human HCC tumor tissues. Overexpression of NUAK1 dramatically enhanced HCC cells proliferation and migration in vitro. Stable induction of NUAK1 expression promoted tumor growth and tumor metastases to the lungs in the subcutaneous xenograft models and intravenous metastasis models. At the cellular level, enforced expression of Dickkopf-1 (DKK1) activated the Akt signaling pathway, thereby promoting the mRNA and protein expression of NUAK1 in HCC cells. By contrast, depletion of DKK1 was found to attenuate the mRNA and protein expression of NUAK1. In the subcutaneous xenograft models, stable induction of DKK1 expression not only accelerated tumor growth but also increased p-Akt and NUAK1 expression; whereas knockdown of DKK1 inhibited tumor growth, p-Akt and NUAK1 expression. Furthermore, immunohistochemical analysis of 20 HCC clinical samples showed that the expression level of NUAK1 was positively correlated with DKK1 and p-Akt. Taken together, we provide the first evidence that DKK1 promotes NUAK1 transcriptional expression via the activation Akt in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , ARN Mensajero , Modelos Animales de Enfermedad , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proteínas Quinasas/metabolismo , Proteínas Represoras/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo
14.
Org Biomol Chem ; 21(8): 1764-1770, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36723244

RESUMEN

High yields (up to 96%) and high ee (up to 92%) were achieved for chiral copper(II) complex-catalysed enantioselective Michael addition of malonates to ß,γ-unsaturated-α-ketoesters. The chiral ligands took advantage of both the binaphthyl and the proline moieties, and substituents with different electronic and steric features could be tolerated. The reactions could be carried out under mild conditions, and a gram scale reaction could be realised without the loss of yield and enantioselectivity.

15.
Oral Dis ; 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36939447

RESUMEN

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterized by excessive fat deposition in hepatocytes caused by non-alcoholic liver injury. Porphyromonas gingivalis (P.g) is the main pathogen causing periodontitis, which can aggravate the progression of NAFLD in our previously study. The objective of this study was to further investigate the pathogenesis and moleculer michanisma of NAFLD aggravated by P.g. METHODS: A mouse model of NAFLD was established, and the changes of inflammatory factors and NF-κB signaling pathway in liver tissue and L-02 cells were analyzed by transcriptome sequencing, Western blot, IHC and RT-PCR. In addition, the NF-κB signaling pathway inhibitor QNZ and ferroptosis inhibitor Fer-1 were used to analyze the relationship between NF-κB signaling pathway and ferroptosis in vitro. RESULTS: In vivo and in vitro experiments, P.g can induce liver inflammation and activate NF-κB signaling pathway. At the same time, P.g promotes ferroptosis and inflammation in L-02 in vitro. QNZ alleviates ferroptosis and inflammatory activation in L-02. Fer-1 can relieve the L-02 inflammation caused by P.g products. CONCLUSION: Porphyromonas gingivalis can induce ferroptosis and inflammation in hepatocytes and further worsen liver lesions. The mechanism of ferroptosis in hepatocytes depends on NF-κB signaling pathway, which provides a new strategy for clinical treatment and prevention of NAFLD.

16.
Cell Commun Signal ; 20(1): 175, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348350

RESUMEN

BACKGROUND: Spermine is frequently elevated in tumor tissues and body fluids of cancer patients and is critical for cancer cell proliferation, migration and invasion. However, the immune functions of spermine in hepatocellular carcinoma progression remains unknown. In the present study, we aimed to elucidate immunosuppressive role of spermine in hepatocellular carcinoma and to explore the underlying mechanism. METHODS: Whole-blood spermine concentration was measured using HPLC. Human primary HCC tissues were collected to examine the expression of CaSR, p-Akt, ß-catenin, STT3A, PD-L1, and CD8. Mouse model of tumorigenesis and lung metastasis were established to evaluate the effects of spermine on hepatocellular carcinoma. Western blotting, immunofluorescence, real time PCR, digital Ca2+ imaging, and chromatin immunoprecipitation assay were used to investigate the underlying mechanisms by which spermine regulates PD-L1 expression and glycosylation in hepatocellular carcinoma cells. RESULTS: Blood spermine concentration in the HCC patient group was significantly higher than that in the normal population group. Spermine could facilitate tumor progression through inducing PD-L1 expression and decreasing the CD8+ T cell infiltration in HCC. Mechanistically, spermine activates calcium-sensing receptor (CaSR) to trigger Ca2+ entry and thereby promote Akt-dependent ß-catenin stabilization and nuclear translocation. Nuclear ß-catenin induced by spermine then activates transcriptional expression of PD-L1 and N-glycosyltransferase STT3A, while STT3A in turn increases the stability of PD-L1 through inducing PD-L1 protein N-glycosylation in HCC cells. CONCLUSIONS: This study reveals the crucial function of spermine in establishing immune privilege by increasing the expression and N-glycosylation of PD-L1, providing a potential strategy for the treatment of hepatocellular carcinoma. Video Abstract.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Humanos , Carcinoma Hepatocelular/patología , Antígeno B7-H1/metabolismo , beta Catenina , Neoplasias Hepáticas/patología , Espermina/farmacología , Proteínas Proto-Oncogénicas c-akt , Línea Celular Tumoral , Microambiente Tumoral
17.
Bioorg Med Chem ; 72: 116968, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36054994

RESUMEN

Oxetanocin A (Oxt-A), a novel oxetanosyl N-glycoside nucleoside, was isolated from Bacillus megaterium in 1986. It carries an oxetane ring on the sugar moiety of the nucleoside scaffold, which contributes to differences in its structure from those of common tetrahydrofuranyl-based nucleosides. In view of the unique 3D-spatial framework, the complete synthesis of Oxt-A has been achieved by multiple research groups. The pharmacological properties of this natural product have also been broadly investigated by pharmacists and chemists since its discovery. Notably, the potential antiviral effect of Oxt-A has captured attention of researchers in the field of antiviral agent development. Furthermore, epidemic outbreaks caused by viruses have been stimulating the preparation and modification of various Oxt-A analogs over the past few decades. However, none of the studies have overviewed the antiviral efficacies of this naturally occurring scaffold yet. Thus, the present review summarizes the synthesis, structural modification, and antiviral activities of Oxt-A and its derivatives. We believe that these comprehensive descriptions will provide a novel perspective for the discovery of antivirus drugs with well-improved performance and pave newer paths for combating sudden public health issues triggered by viruses in the future.


Asunto(s)
Antivirales , Productos Biológicos , Adenina/análogos & derivados , Antivirales/química , Antivirales/farmacología , Productos Biológicos/farmacología , Nucleósidos/farmacología , Azúcares
18.
J Immunol ; 204(12): 3160-3170, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32414810

RESUMEN

It is well known that some pathogenic cells have enhanced glycolysis; the regulatory network leading to increased glycolysis are not well characterized. In this study, we show that CNS-infiltrated pathogenic TH17 cells from diseased mice specifically upregulate glycolytic pathway genes compared with homeostatic intestinal TH17 cells. Bioenergetic assay and metabolomics analyses indicate that in vitro-derived pathogenic TH17 cells are highly glycolytic compared with nonpathogenic TH17 cells. Chromatin landscape analyses demonstrate TH17 cells in vivo that show distinct chromatin states, and pathogenic TH17 cells show enhanced chromatin accessibility at glycolytic genes with NF-κB binding sites. Mechanistic studies reveal that miR-21 targets the E3 ubiquitin ligase Peli1-c-Rel pathway to promote glucose metabolism of pathogenic TH17 cells. Therapeutic targeting c-Rel-mediated glycolysis in pathogenic TH17 cells represses autoimmune diseases. These findings extend our understanding of the regulation TH17 cell glycolysis in vivo and provide insights for future therapeutic intervention to TH17 cell-mediated autoimmune diseases.


Asunto(s)
Autoinmunidad/genética , Glucólisis/genética , MicroARNs/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-rel/genética , Transducción de Señal/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Enfermedades Autoinmunes/genética , Sitios de Unión/genética , Células Cultivadas , Cromatina/genética , Glucosa/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos/genética , FN-kappa B/genética , Células Th17
19.
Luminescence ; 37(10): 1741-1750, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35896481

RESUMEN

The rapid, sensitive, and selective detection of ascorbic acid (AA) is of significance in medical assays and diagnostics. In this work, a new aminoperylenediimide (APDI) derived ratiometric fluorescent probe based on the specific redox reaction of cobalt oxyhydroxide (CoOOH) and AA was constructed. APDI exhibited dual fluorescence emission peaks at 549 and 596 nm with an excitation wavelength of 494 nm. In the presence of CoOOH, the dual fluorescence could be quenched. The dominant fluorescence quenching mechanism was caused by the inner filter effect. Using the red emission as a reference, the fluorescence intensity ratio (F549 /F596 ) was linearly correlated with the concentration of AA over a range of 0.05 to 1 µM. The limit of detection for AA was found to be 17 nM. Importantly, the probe was successfully used to detect AA in living cells. Therefore, this high sensitivity and selectivity strategy could directly survey the AA levels in real samples.


Asunto(s)
Ácido Ascórbico , Puntos Cuánticos , Cobalto , Fluorescencia , Colorantes Fluorescentes , Imidas , Límite de Detección , Óxidos , Perileno/análogos & derivados
20.
Am J Physiol Cell Physiol ; 320(4): C509-C519, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33406026

RESUMEN

Lysophosphatidic acid (LPA) is one of the lipids identified to be involved in stem cell differentiation. It exerts various functions through activation of G protein-coupled lysophosphatidic acid receptors (LPARs). In previous studies, we have demonstrated that activation of LPA receptor 3 (LPA3) promotes erythropoiesis of human hematopoietic stem cells (HSCs) and zebrafish using molecular and pharmacological approaches. Our results show that treatment with lysophosphatidic acid receptor 2 (LPA2) agonist suppressed erythropoiesis, whereas activation of LPA3 by 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted it, both in vitro and in vivo. Furthermore, we have demonstrated the inhibitory role of LPA3 during megakaryopoiesis. However, the mechanism underlying these observations remains elusive. In the present study, we suggest that the expression pattern of LPARs may be correlated with the transcriptional factors GATA-1 and GATA-2 at different stages of myeloid progenitors. We determined that manipulation of GATA factors affected the expression levels of LPA2 and LPA3 in K562 leukemia cells. Using luciferase assays, we demonstrate that the promoter regions of LPAR2 and LPAR3 genes were regulated by these GATA factors in HEK293T cells. Mutation of GATA-binding sites in these regions abrogated luciferase activity, suggesting that LPA2 and LPA3 are regulated by GATA factors. Moreover, physical interaction between GATA factors and the promoter region of LPAR genes was verified in K562 cells using chromatin immunoprecipitation (ChIP) studies. Taken together, our results suggest that balance between LPA2 and LPA3 expression, which may be determined by GATA factors, is a regulatory switch for lineage commitment in myeloid progenitors. The expression-level balance of LPA receptor subtypes represents a novel mechanism regulating erythropoiesis and megakaryopoiesis.


Asunto(s)
Linaje de la Célula , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Transcripción Genética , Sitios de Unión , Eritropoyesis , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Células HEK293 , Humanos , Células K562 , Regiones Promotoras Genéticas , Receptores del Ácido Lisofosfatídico/genética , Transducción de Señal , Trombopoyesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA