Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 194: 202-213, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36427382

RESUMEN

Screening bicarbonate-tolerant genotypes is an environmentally-friendly and long-term effective strategy to cope with bicarbonate-induced chlorosis in fruit crops grown on calcareous soils. We investigated eleven genotypes from four kiwifruit species (Actinidia chinensis, A. macrosperma, A. polygama, and A. valvata) for differences in bicarbonate tolerance. We also characterized the physiological and molecular differences in two contrasting genotypes of this group. In the first experiment, bicarbonate-treated plantlets were irrigated with 3.0 g L-1 CaCO3 and 5.04 g L-1 NaHCO3 in peat and perlite medium culture. Based on principal component analysis, weight-based membership function method and cluster analysis, the tested genotypes were classified into three groups: (1) tolerant, including YX, Av-1, Acd, Ap, Av-2, and QM; (2) moderately tolerant, including Av-3, Am, Av-4, and HWD; and (3) sensitive, including only QH. In the second experiment, QH (bicarbonate-sensitive) and YX (bicarbonate-tolerant) were grown in sand culture with 4.0 g L-1 CaCO3 and 0.84 g L-1 or 1.26 g L-1 NaHCO3. Compared with QH, YX showed a better ability to take up iron (Fe) by roots and to transport Fe from roots to shoots in the bicarbonate treatments, probably due to a better capacity to protect from oxidative damage and to excrete protons, and a differential expression of genes associated with Fe uptake and translocation, including HA8, IRT1, YSL3 and NRAMP3. The results can facilitate identifying potential resources for bicarbonate tolerance and breeding new rootstocks, and contribute to the elucidation of the bicarbonate tolerance mechanisms in the genus Actinidia.


Asunto(s)
Actinidia , Bicarbonatos , Bicarbonatos/farmacología , Bicarbonatos/metabolismo , Actinidia/genética , Frutas/genética , Fitomejoramiento , Genotipo , Raíces de Plantas/metabolismo
2.
Plants (Basel) ; 9(11)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202654

RESUMEN

Bicarbonate-induced iron (Fe) deficiency (+Bic) is frequently observed in kiwifruit orchards, but more research attention has been paid to direct Fe deficiency (-Fe) in plants, including kiwifruit. Here we compared the differences of kiwifruit plants between -Fe and +Bic in: (1) the traits of 57Fe uptake and translocation within plants, (2) Fe forms in roots, and (3) some acidic ions and metabolites in roots. The concentration of 57Fe derived from nutrient solution (57Fedfs) in roots was less reduced in +Bic than -Fe treatment, despite similar decrease in shoots of both treatments. +Bic treatment increased 57Fedfs distribution in fine roots but decreased it in new leaves and stem, thereby displaying the inhibition of 57Fedfs translocation from roots to shoots and from fine roots to xylem of coarse roots. Moreover, +Bic imposition induced the accumulation of water-soluble Fe and apoplastic Fe in roots. However, the opposite was observed in -Fe-treated plants. Additionally, the cell wall Fe and hemicellulose Fe in roots were less reduced by +Bic than -Fe treatment. +Bic treatment also triggered the reduction in H+ extrusion and the accumulation of NH4+, succinic acid, and some amino acids in roots. These results suggest that, contrary to -Fe, +Bic treatment inhibits Fe translocation to shoots by accumulating water-soluble and apoplastic Fe and slowing down the release of hemicellulose Fe in the cell wall in kiwifruit roots, which may be related to the decreased H+ extrusion and the imbalance between C and N metabolisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA