RESUMEN
PURPOSE: Discordance between HER2 expression in tumor tissue (tHER2) and HER2 status on circulating tumor cells (cHER2) has been reported. It remains largely underexplored whether patients with tHER2-/cHER2+ can benefit from anti-HER2 targeted therapies. METHODS: cHER2 status was determined in 105 advanced-stage patients with tHER2- breast tumors. Association between cHER2 status and progression-free survival (PFS) was analyzed by univariate and multivariate Cox models and survival differences were compared by Kaplan-Meier method. RESULTS: Compared to the patients with low-risk cHER2 (cHER2+ < 2), those with high-risk cHER2 (cHER2+ ≥ 2) had shorter survival time and an increased risk for disease progression (hazard ratio [HR] 2.16, 95% confidence interval [CI] 1.20-3.88, P = 0.010). Among the patients with high-risk cHER2, those who received anti-HER2 targeted therapies had improved PFS compared with those who did not (HR 0.30, 95% CI 0.10-0.92, P = 0.035). In comparison, anti-HER2 targeted therapy did not affect PFS among those with low-risk cHER2 (HR 0.70, 95% CI 0.36-1.38, P = 0.306). Similar results were obtained after adjusting covariates. A longitudinal analysis of 67 patients with cHER2 detected during follow-ups found that those whose cHER2 status changed from high-risk at baseline to low-risk at first follow-up exhibited a significantly improved survival compared to those whose cHER2 remained high-risk (median PFS: 11.7 weeks vs. 2.0 weeks, log-rank P = 0.001). CONCLUSION: In advanced-stage breast cancer patients with tHER2- tumors, cHER2 status has the potential to guide the use of anti-HER2 targeted therapy in patients with high-risk cHER2.
Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/patología , Células Neoplásicas Circulantes/patología , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Células Neoplásicas Circulantes/metabolismo , Receptor ErbB-2/genética , Tasa de SupervivenciaRESUMEN
BACKGROUND: While mortality in the United States has decreased for most cancers, mortality from combined hepatocellular liver cancer and intrahepatic cholangiocarcinoma (ICC) has increased and ranked 1st in annual percent increase among cancer sites. Because reported statistics combine ICC with other liver cancers, mortality rates of cholangiocarcinoma (CCA) remain unknown. This study is to determine CCA mortality trends and variation based on national data. METHODS: This nation-wide study was based on the underlying cause of death data collected by the National Center for Health Statistics (NCHS) between 1999 and 2014. The Center for Disease Control (CDC) Wide-ranging Online Data for Epidemiologic Research (WONDER) system was used to obtain data. ICC and extra-hepatic CCA (ECC) were defined by ICD-10 diagnosis codes. Age-adjusted mortality rate was standardized to the US population in 2000. RESULTS: There were more than 7000 CCA deaths each year in the US after 2013. CCA mortality for those aged 25+ increased 36 % between 1999 and 2014, from 2.2 per 100,000 (95 % confidence interval [CI] 2.1-2.3) to 3.0 per 100,000 (95 % CI, 2.9-3.1). Mortality rates were lower among females compared with males (risk ratio [RR] 0.78, 95 % CI 0.77-0.79). Asians had the highest mortality. Between 2004 and 2014, the increase in CCA mortality was highest among African Americans (45 %) followed by Asians (22 %), and whites (20 %). CONCLUSION: Based on the most recent national data, CCA mortality rates have increased substantially in the past decade. Among different race/ethnic groups, African Americans have the highest increase in CCA mortality.
RESUMEN
BACKGROUND: Both circulating tumour cell (CTC) and total circulating cell-free DNA (ccfDNA) predict cancer patient prognosis. However, no study has explored the prognostic value of the combined use of CTC and ccfDNA. We aimed to investigate individual and joint effects of CTC and ccfDNA on clinical outcomes of metastatic breast cancer (MBC) patients. METHODS: We collected 227 blood samples from 117 MBC patients. CTCs were enumerated using the CellSearch System. ccfDNAs were quantified by quantitative real-time polymerase chain reaction and Qubit fluorometer. The individual and joint effects of CTC and ccfDNA levels on patient progression-free survival (PFS) and overall survival (OS) were analysed using Cox proportional hazards models. RESULTS: Compared to patients with <5 CTCs, patients with ≥5 CTCs had a 2.58-fold increased risk of progression and 3.63-fold increased risk of death. High level of ccfDNA was associated with a 2.05-fold increased risk of progression and 3.56-fold increased risk of death. These associations remained significant after adjusting for other important clinical covariates and CTC/ccfDNA levels. CTC and ccfDNA levels had a joint effect on patient outcomes. Compared to patients with low levels of both CTC and ccfDNA, those with high levels of both markers exhibited a >17-fold increased death risk (P < 0.001). Moreover, longitudinal analysis of 132 samples from 22 patients suggested that the inconsistency between CTC level and outcome in some patients could possibly be explained by ccfDNA level. CONCLUSIONS: CTC and total ccfDNA levels were individually and jointly associated with PFS and OS in MBC patients.