Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 615
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 169(4): 597-609.e11, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475892

RESUMEN

Antibodies to Zika virus (ZIKV) can be protective. To examine the antibody response in individuals who develop high titers of anti-ZIKV antibodies, we screened cohorts in Brazil and Mexico for ZIKV envelope domain III (ZEDIII) binding and neutralization. We find that serologic reactivity to dengue 1 virus (DENV1) EDIII before ZIKV exposure is associated with increased ZIKV neutralizing titers after exposure. Antibody cloning shows that donors with high ZIKV neutralizing antibody titers have expanded clones of memory B cells that express the same immunoglobulin VH3-23/VK1-5 genes. These recurring antibodies cross-react with DENV1, but not other flaviviruses, neutralize both DENV1 and ZIKV, and protect mice against ZIKV challenge. Structural analyses reveal the mechanism of recognition of the ZEDIII lateral ridge by VH3-23/VK1-5 antibodies. Serologic testing shows that antibodies to this region correlate with serum neutralizing activity to ZIKV. Thus, high neutralizing responses to ZIKV are associated with pre-existing reactivity to DENV1 in humans.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Infección por el Virus Zika/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Brasil , Femenino , Humanos , Memoria Inmunológica , Leucocitos Mononucleares/inmunología , Masculino , México , Ratones , Infección por el Virus Zika/sangre
2.
Cell ; 166(6): 1445-1458.e12, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27610569

RESUMEN

A vaccine that elicits broadly neutralizing antibodies (bNAbs) against HIV-1 is likely to be protective, but this has not been achieved. To explore immunization regimens that might elicit bNAbs, we produced and immunized mice expressing the predicted germline PGT121, a bNAb specific for the V3-loop and surrounding glycans on the HIV-1 spike. Priming with an epitope-modified immunogen designed to activate germline antibody-expressing B cells, followed by ELISA-guided boosting with a sequence of directional immunogens, native-like trimers with decreasing epitope modification, elicited heterologous tier-2-neutralizing responses. In contrast, repeated immunization with the priming immunogen did not. Antibody cloning confirmed elicitation of high levels of somatic mutation and tier-2-neutralizing antibodies resembling the authentic human bNAb. Our data establish that sequential immunization with specifically designed immunogens can induce high levels of somatic mutation and shepherd antibody maturation to produce bNAbs from their inferred germline precursors.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/administración & dosificación , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Inmunización , Inmunoglobulinas/genética , Secuencia de Aminoácidos , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Linfocitos B/inmunología , Clonación Molecular , Cartilla de ADN/química , Epítopos/inmunología , Técnicas de Sustitución del Gen , Infecciones por VIH/inmunología , Ratones , Mutación , Alineación de Secuencia
3.
Cell ; 161(7): 1505-15, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26091035

RESUMEN

A subset of individuals infected with HIV-1 develops broadly neutralizing antibodies (bNAbs) that can prevent infection, but it has not yet been possible to elicit these antibodies by immunization. To systematically explore how immunization might be tailored to produce them, we generated mice expressing the predicted germline or mature heavy chains of a potent bNAb to the CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein (Env). Immunogens specifically designed to activate B cells bearing germline antibodies are required to initiate immune responses, but they do not elicit bNAbs. In contrast, native-like Env trimers fail to activate B cells expressing germline antibodies but elicit bNAbs by selecting for a restricted group of light chains bearing specific somatic mutations that enhance neutralizing activity. The data suggest that vaccination to elicit anti-HIV-1 antibodies will require immunization with a succession of related immunogens.


Asunto(s)
Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , Técnicas de Sustitución del Gen , VIH-1/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Animales , Antígenos Virales , Linfocitos B/inmunología , Antígenos CD4/metabolismo , Infecciones por VIH/inmunología , Humanos , Ratones , Mutación , Bazo/citología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
4.
Nature ; 613(7945): 735-742, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36473496

RESUMEN

Feedback inhibition of humoral immunity by antibodies was first documented in 19091. Subsequent studies showed that, depending on the context, antibodies can enhance or inhibit immune responses2,3. However, little is known about how pre-existing antibodies influence the development of memory B cells. Here we examined the memory B cell response in individuals who received two high-affinity anti-SARS-CoV-2 monoclonal antibodies and subsequently two doses of an mRNA vaccine4-8. We found that the recipients of the monoclonal antibodies produced antigen-binding and neutralizing titres that were only fractionally lower compared than in control individuals. However, the memory B cells of the individuals who received the monoclonal antibodies differed from those of control individuals in that they predominantly expressed low-affinity IgM antibodies that carried small numbers of somatic mutations and showed altered receptor binding domain (RBD) target specificity, consistent with epitope masking. Moreover, only 1 out of 77 anti-RBD memory antibodies tested neutralized the virus. The mechanism underlying these findings was examined in experiments in mice that showed that germinal centres formed in the presence of the same antibodies were dominated by low-affinity B cells. Our results indicate that pre-existing high-affinity antibodies bias germinal centre and memory B cell selection through two distinct mechanisms: (1) by lowering the activation threshold for B cells, thereby permitting abundant lower-affinity clones to participate in the immune response; and (2) through direct masking of their cognate epitopes. This may in part explain the shifting target profile of memory antibodies elicited by booster vaccinations9.


Asunto(s)
Anticuerpos Antivirales , Linfocitos B , Vacunas contra la COVID-19 , COVID-19 , Retroalimentación Fisiológica , Memoria Inmunológica , Vacunación , Vacunas de ARNm , Animales , Ratones , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/terapia , COVID-19/virología , SARS-CoV-2/inmunología , Vacunas de ARNm/inmunología , Vacunas contra la COVID-19/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Inmunoglobulina M/inmunología , Centro Germinal/citología , Centro Germinal/inmunología , Inmunización Secundaria , Hipermutación Somática de Inmunoglobulina
5.
Nature ; 602(7895): 68-72, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110757

RESUMEN

Interactions in many-body physical systems, from condensed matter to high-energy physics, lead to the emergence of exotic particles. Examples are mesons in quantum chromodynamics and composite fermions in fractional quantum Hall systems, which arise from the dynamical coupling between matter and gauge fields1,2. The challenge of understanding the complexity of matter-gauge interaction can be aided by quantum simulations, for which ultracold atoms offer a versatile platform via the creation of artificial gauge fields. An important step towards simulating the physics of exotic emergent particles is the synthesis of artificial gauge fields whose state depends dynamically on the presence of matter. Here we demonstrate deterministic formation of domain walls in a stable Bose-Einstein condensate with a gauge field that is determined by the atomic density. The density-dependent gauge field is created by simultaneous modulations of an optical lattice potential and interatomic interactions, and results in domains of atoms condensed into two different momenta. Modelling the domain walls as elementary excitations, we find that the domain walls respond to synthetic electric field with a charge-to-mass ratio larger than and opposite to that of the bare atoms. Our work offers promising prospects to simulate the dynamics and interactions of previously undescribed excitations in quantum systems with dynamical gauge fields.

6.
Nature ; 607(7917): 128-134, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35447027

RESUMEN

The Omicron variant of SARS-CoV-2 infected many vaccinated and convalescent individuals1-3. Despite the reduced protection from infection, individuals who received three doses of an mRNA vaccine were highly protected from more serious consequences of infection4. Here we examine the memory B cell repertoire in a longitudinal cohort of individuals receiving three mRNA vaccine doses5,6. We find that the third dose is accompanied by an increase in, and evolution of, receptor-binding domain (RBD)-specific memory B cells. The increase is due to expansion of memory B cell clones that were present after the second dose as well as the emergence of new clones. The antibodies encoded by these cells showed significantly increased potency and breadth when compared with antibodies obtained after the second dose. Notably, the increase in potency was especially evident among newly developing clones of memory cells, which differed from persisting clones in targeting more conserved regions of the RBD. Overall, more than 50% of the analysed neutralizing antibodies in the memory compartment after the third mRNA vaccine dose neutralized the Omicron variant. Thus, individuals receiving three doses of an mRNA vaccine have a diverse memory B cell repertoire that can respond rapidly and produce antibodies capable of clearing even diversified variants such as Omicron. These data help to explain why a third dose of a vaccine that was not specifically designed to protect against variants is effective against variant-induced serious disease.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Células B de Memoria , SARS-CoV-2 , Vacunas de ARNm , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Humanos , Células B de Memoria/inmunología , ARN Mensajero/genética , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Vacunas de ARNm/administración & dosificación , Vacunas de ARNm/inmunología
7.
Nature ; 592(7856): 708-711, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33911270

RESUMEN

Molecular quantum gases (that is, ultracold and dense molecular gases) have many potential applications, including quantum control of chemical reactions, precision measurements, quantum simulation and quantum information processing1-3. For molecules, to reach the quantum regime usually requires efficient cooling at high densities, which is frequently hindered by fast inelastic collisions that heat and deplete the population of molecules4,5. Here we report the preparation of two-dimensional Bose-Einstein condensates (BECs) of spinning molecules by inducing pairing interactions in an atomic condensate near a g-wave Feshbach resonance6. The trap geometry and the low temperature of the molecules help to reduce inelastic loss, ensuring thermal equilibrium. From the equation-of-state measurement, we determine the molecular scattering length to be + 220(±30) Bohr radii (95% confidence interval). We also investigate the unpairing dynamics in the strong coupling regime and find that near the Feshbach resonance the dynamical timescale is consistent with the unitarity limit. Our work demonstrates the long-sought transition between atomic and molecular condensates, the bosonic analogue of the crossover from a BEC to a Bardeen-Cooper-Schrieffer (BCS) superfluid in a Fermi gas7-9. In addition, our experiment may shed light on condensed pairs with orbital angular momentum, where a novel anisotropic superfluid with non-zero surface current is predicted10,11, such as the A phase of 3He.

8.
Proc Natl Acad Sci U S A ; 121(1): e2307395120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38157451

RESUMEN

Oxidative stress, which can be activated by a variety of environmental risk factors, has been implicated as an important pathogenic factor for inflammatory bowel disease (IBD). However, how oxidative stress drives IBD onset remains elusive. Here, we found that oxidative stress was strongly activated in inflamed tissues from both ulcerative colitis patients and Crohn's disease patients, and it caused nuclear-to-cytosolic TDP-43 transport and a reduction in the TDP-43 protein level. To investigate the function of TDP-43 in IBD, we inducibly deleted exons 2 to 3 of Tardbp (encoding Tdp-43) in mouse intestinal epithelium, which disrupted its nuclear localization and RNA-processing function. The deletion gave rise to spontaneous intestinal inflammation by inducing epithelial cell necroptosis. Suppression of the necroptotic pathway with deletion of Mlkl or the RIP1 inhibitor Nec-1 rescued colitis phenotypes. Mechanistically, disruption of nuclear TDP-43 caused excessive R-loop accumulation, which triggered DNA damage and genome instability and thereby induced PARP1 hyperactivation, leading to subsequent NAD+ depletion and ATP loss, consequently activating mitochondrion-dependent necroptosis in intestinal epithelial cells. Importantly, restoration of cellular NAD+ levels with NAD+ or NMN supplementation, as well as suppression of ALKBH7, an α-ketoglutarate dioxygenase in mitochondria, rescued TDP-43 deficiency-induced cell death and intestinal inflammation. Furthermore, TDP-43 protein levels were significantly inversely correlated with γ-H2A.X and p-MLKL levels in clinical IBD samples, suggesting the clinical relevance of TDP-43 deficiency-induced mitochondrion-dependent necroptosis. Taken together, these findings identify a unique pathogenic mechanism that links oxidative stress to intestinal inflammation and provide a potent and valid strategy for IBD intervention.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Necroptosis , Humanos , Animales , Ratones , NAD/metabolismo , Estructuras R-Loop , Enfermedades Inflamatorias del Intestino/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Inflamación/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo
9.
Nature ; 570(7762): 468-473, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31142836

RESUMEN

Broadly neutralizing monoclonal antibodies protect against infection with HIV-1 in animal models, suggesting that a vaccine that elicits these antibodies would be protective in humans. However, it has not yet been possible to induce adequate serological responses by vaccination. Here, to activate B cells that express precursors of broadly neutralizing antibodies within polyclonal repertoires, we developed an immunogen, RC1, that facilitates the recognition of the variable loop 3 (V3)-glycan patch on the envelope protein of HIV-1. RC1 conceals non-conserved immunodominant regions by the addition of glycans and/or multimerization on virus-like particles. Immunization of mice, rabbits and rhesus macaques with RC1 elicited serological responses that targeted the V3-glycan patch. Antibody cloning and cryo-electron microscopy structures of antibody-envelope complexes confirmed that immunization with RC1 expands clones of B cells that carry the anti-V3-glycan patch antibodies, which resemble precursors of human broadly neutralizing antibodies. Thus, RC1 may be a suitable priming immunogen for sequential vaccination strategies in the context of polyclonal repertoires.


Asunto(s)
Vacunas contra el SIDA/inmunología , Linfocitos B/inmunología , Células Clonales/inmunología , VIH-1/química , VIH-1/inmunología , Macaca mulatta/inmunología , Vacunación , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/ultraestructura , Afinidad de Anticuerpos , Especificidad de Anticuerpos/inmunología , Complejo Antígeno-Anticuerpo/inmunología , Linfocitos B/citología , Proliferación Celular , Células Clonales/citología , Clonación Molecular , Reactividad Cruzada/inmunología , Microscopía por Crioelectrón , Femenino , Anticuerpos Anti-VIH/química , Anticuerpos Anti-VIH/genética , Anticuerpos Anti-VIH/inmunología , Anticuerpos Anti-VIH/ultraestructura , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/inmunología , Epítopos Inmunodominantes/ultraestructura , Activación de Linfocitos , Masculino , Ratones , Modelos Moleculares , Polisacáridos/inmunología , Conejos , Hipermutación Somática de Inmunoglobulina
10.
Cancer ; 130(9): 1650-1662, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38157276

RESUMEN

BACKGROUND: Penile squamous cell carcinoma (PSCC) is a human papillomavirus (HPV)-associated malignancy. Immunotherapy is emerging as a potential treatment for advanced PSCC. In this study, the authors analyzed the association of HPV status with outcomes and the immune microenvironment in patients with advanced PSCC undergoing programmed cell death protein 1 (PD1) inhibitor-based combination therapy (PCT). METHODS: HPV status was assessed using quantitative polymerase chain reaction in 87 patients with advanced PSCC treated with PCT. Objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS) in the HPV+ and HPV- groups were compared. Additionally, bulk RNA sequencing was performed to investigate the potential impact of HPV on the immune microenvironment in advanced PSCC. RESULTS: Among patients receiving first-line PCT, ORR (91.7% vs. 64.6%, p = .014) and DCR (100.0% vs. 79.2%, p = .025) in the HPV+ group were higher compared to the HPV- group. Kaplan-Meier curves demonstrated that the HPV+ group exhibited superior PFS (p = .005) and OS (p = .004) for patients in the first-line setting. However, these advantages of HPV infection were not observed in multi-line PCT (p > .050). HPV status remained an independent prognostic factor for predicting better ORR (p = .024), PFS (p = .002), and OS (p = .020) in the multivariate analyses. Landmark analyses showed that the HPV-induced superiority of PFS occurred at an early stage (within 3 months) and OS occurred at a relatively late stage (within 9 months). Bioinformatic analyses identified potential immune-activated genes (GLDC, CYP4F12, etc.) and pathways (RAGE, PI3K/AKT, etc.), antitumor immune cell subtypes, and lower tumor immune dysfunction and exclusion scores in HPV+ tissues. CONCLUSIONS: HPV infection may confer treatment efficacy and survival benefits in patients with advanced PSCC receiving first-line PCT because of the possible stimulation of the antitumor immune microenvironment. PLAIN LANGUAGE SUMMARY: Human papillomavirus (HPV) infection may induce better objective response rate, progression-free survival (PFS), and overall survival (OS) for advanced penile squamous cell carcinoma (PSCC) patients receiving first-line programmed cell death protein 1 inhibitor-based combination therapy (PCT) instead of multi-line PCT. HPV infection-induced PFS advantage occurs at an early stage (within 3 months) whereas OS superiority occurs at a relatively late stage (within 9 months). Antitumor immune microenvironment could be stimulated by HPV infection in advanced PSCC tissues.


Asunto(s)
Carcinoma de Células Escamosas , Infecciones por Papillomavirus , Neoplasias del Pene , Masculino , Humanos , Infecciones por Papillomavirus/complicaciones , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Fosfatidilinositol 3-Quinasas , Carcinoma de Células Escamosas/patología , Resultado del Tratamiento , Neoplasias del Pene/tratamiento farmacológico , Microambiente Tumoral
11.
BMC Med ; 22(1): 324, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113028

RESUMEN

BACKGROUND: A stent with characteristics of a hybrid design may have advantages in improving the patency of symptomatic iliofemoral vein obstruction. This study assessed the safety and effectiveness of the V-Mixtent Venous Stent in treating symptomatic iliofemoral outflow obstruction. METHODS: Eligible patients had a Clinical-Etiologic-Anatomic-Physiologic (CEAP) C classification of ≥ 3 or a Venous Clinical Severity Score (VCSS) pain score of ≥ 2. The primary safety endpoint was the rate of major adverse events within 30 days. The primary effectiveness endpoint was the 12-month primary patency rate. Secondary endpoints included changes in VCSS from baseline to 6 and 12 months, alterations in CEAP C classification, Chronic Venous Disease Quality of Life Questionnaire (CIVIQ-14) scores at 12 months, and stent durability measures. RESULTS: Between December 2020 and November 2021, 171 patients were enrolled across 15 institutions. A total of 185 endovenous stents were placed, with 91.81% of subjects receiving one stent and 8.19% receiving 2 stents. Within 30 days, only two major adverse events occurred (1.17%; 95% confidence interval [CI], 0.14-4.16%), below the literature-defined performance goal of 11% (P < .001). The 12-month primary patency rate (91.36%; 95% CI, 85.93-95.19%; P < .001) exceeded the literature-defined performance goal. VCSS changes from baseline demonstrated clinical improvement at 6 months (- 4.30 ± 3.66) and 12 months (- 4.98 ± 3.67) (P < .001). Significant reduction in symptoms, as measured by CEAP C classification and CIVIQ-14, was observed from pre-procedure to 12 months (P < .001). CONCLUSIONS: The 12-month outcomes confirm the safety and effectiveness of the V-Mixtent Venous Stent in managing symptomatic iliofemoral venous outflow obstruction, including clinical symptom improvement compared to before treatment.


Asunto(s)
Vena Femoral , Vena Ilíaca , Stents , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Vena Femoral/cirugía , Vena Ilíaca/cirugía , Resultado del Tratamiento , Adulto , Anciano , Calidad de Vida
12.
Small ; 20(15): e2308024, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37992243

RESUMEN

Atomic layer deposition (ALD) growth of conformal thin SnOx films on perovskite absorbers offers a promising method to improve carrier-selective contacts, enable sputter processing, and prevent humidity ingress toward high-performance tandem perovskite solar cells. However, the interaction between perovskite materials and reactive ALD precursor limits the process parameters of ALD-SnOx film and requires an additional fullerene layer. Here, it demonstrates that reducing the water dose to deposit SnOx can reduce the degradation effect upon the perovskite underlayer while increasing the water dose to promote the oxidization can improve the electrical properties. Accordingly, a SnOx buffer layer with a gradient composition structure is designed, in which the compositionally varying are achieved by gradually increasing the oxygen source during the vapor deposition from the bottom to the top layer. In addition, the gradient SnOx structure with favorable energy funnels significantly enhances carrier extraction, further minimizing its dependence on the fullerene layer. Its broad applicability for different perovskite compositions and various textured morphology is demonstrated. Notably, the design boosts the efficiencies of perovskite/silicon tandem cells (1.0 cm2) on industrially textured Czochralski (CZ) silicon to a certified efficiency of 28.0%.

13.
Small ; : e2402564, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087370

RESUMEN

For materials with coexisting phases, the transition from a random to an ordered distribution of materials often generates new mechanisms. Although the magnetic confinement effect has improved the electromagnetic (EM) performance, the transition from random to ordered magnetic confinement positions remains a synthetic challenge, and the underlying mechanisms are still unclear. Herein, precise control of magnetic nanoparticles is achieved through a spatial confinement growth strategy, preparing five different modalities of magnetic confined carbon fiber materials, effectively inhibiting magnetic agglomeration. Systematic studies have shown that the magnetic confinement network can refine CoNi NPs size and enhance strong magnetic coupling interactions. Compared to CoNi@HCNFs on the hollow carbon fibers (HCNFs) outer surface, HCNFs@CoNi constructed on the inner surface induce stronger spatial charge polarization relaxation at the interface and exhibit stronger magnetic coupling interactions at the inner surface due to the high-density magnetic coupling units at the micro/nanoscale, thereby respectively enhancing dielectric and magnetic losses. Remarkably, they achieve a minimum reflection loss (RLmin) of -64.54 dB and an absorption bandwidth of 5.60 GHz at a thickness of 1.77 mm. This work reveals the microscale mechanism of magnetic confinement-induced different polarization relaxation and magnetic response, providing a new strategy for designing magnetic materials.

14.
Hum Genomics ; 17(1): 116, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38111044

RESUMEN

BACKGROUND: The effect of SPP1 in squamous cell carcinoma of the penis (PSCC) remained unknown. We attempted to clarify the function of the SPP1 gene in PSCC. METHOD: Eight paired penile cancer specimens (including penile cancer tissue, paracancerous tissue, and positive lymph node tissue) subjected to whole transcriptome sequencing were analysed to identify differentially expressed genes. We used immunohistochemistry to detect the expression of SPP1 protein and immune cell related proteins in penile cancer tissue. Then, we performed weighted gene coexpression network analysis (WGCNA) to identify the genes related to SPP1 in penile cancer tissue and positive lymph node tissue. Based on the GSE57955 dataset, the CIBERSORT and ssGSEA algorithms were carried out to investigate the immune environment of PSCC. GSVA analysis was conducted to identify the signaling pathways related to SPP1 subgroups. Enzyme-linked immunosorbent assay (ELISA) method was adopted to detect SPP1 level in the serum of 60 patients with penile cancer. RESULTS: Differential analysis indicated that SPP1 was the most differentially upregulated gene in both penile cancer tissues and positive lymph node tissues. Survival analysis suggested that the prognosis of the low-SPP1 group was significantly poorer than that of the high-SPP1 group. Subsequently, immune-related bioinformatics showed that SPP1 was significantly associated with B cells, CD8 + T cells, CD4 + T cells, macrophages, helper T cells, neutrophils and dendritic cells. The immunohistochemical results showed that the high-SPP1 group was characterized by relatively high expression of CD16 and relatively low expression of CD4. GSVA analysis indicated that high-SPP1 group was significantly associated with immune-related pathways such as PD-L1 expression and the PD-1 checkpoint pathway in cancer and the TNF signaling pathway. ELISA demonstrated that the serum level of SPP1 in patients with positive lymph node metastasis of penile cancer was significantly higher than that in patients with negative lymph node metastasis of penile cancer. CONCLUSION: Our study shows that the SPP1 gene might be an effective biomarker for predicting the prognosis and the efficacy of immunotherapy in PSCC patients.


Asunto(s)
Carcinoma de Células Escamosas , Osteopontina , Neoplasias del Pene , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia , Neoplasias del Pene/diagnóstico , Neoplasias del Pene/genética , Neoplasias del Pene/patología , Neoplasias del Pene/terapia , Inmunoterapia/normas , Osteopontina/sangre , Osteopontina/genética , Osteopontina/metabolismo , Biomarcadores de Tumor/sangre , Perfilación de la Expresión Génica , Análisis de Supervivencia , Análisis de Secuencia de ARN
15.
Wound Repair Regen ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022990

RESUMEN

There is a lack of effective treatment options for diabetic refractory wounds, which presents a critical clinical issue that needs to be addressed urgently. Our research has demonstrated that human placenta-derived mesenchymal stem cells (plaMSCs) facilitate the migration and proliferation of HaCat cells, thereby enhancing diabetic wound healing primarily via the exosomes derived from plaMSCs (plaMSCs-Ex). Using label-free proteomics, plaMSCs and their exosomes were analysed for proteome taxonomic content in order to explore the underlying effective components mechanism of plaMSCs-Ex in diabetic wound healing. Differentially expressed proteins enriched in plaMSCs-Ex were identified and underwent bioinformatics analysis including GO annotation, KEGG pathway enrichment, gene set enrichment analysis (GSEA) and protein-protein interaction analysis (PPI). Results showed that the proteins enriched in plaMSCs-Ex are significantly involved in extracellular matrix organisation, epithelium morphogenesis, cell growth, adhesion, proliferation and angiogenesis. PPI analysis filtered 2 wound healing-related clusters characterised by hub proteins such as POSTN, FN1, SPARC, TIMP1, SERPINE1, LRP1 and multiple collagens. In brief, the exosomal proteins derived from plaMSCs reveal diverse functions of regeneration and tissue remodelling based on proteomics analysis and potentially play a role in diabetic wound healing.

16.
Phys Chem Chem Phys ; 26(4): 3531-3539, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38214068

RESUMEN

Two-dimensional (2D) van der Waals (vdW) multiferroic tunnel junctions (MFTJs) composed of a ferromagnetic metal and a ferroelectric barrier have controllable thickness and clean interface and can realize the coexistence of tunneling magnetoresistance (TMR) and tunneling electroresistance (TER). Therefore, they have enormous potential application in nonvolatile multistate memories. Here, using first principles combined with non-equilibrium Green's function method, we have systematically investigated the spin-dependent transport properties of Fe3GeTe2/MnSe/Fe3GeTe2 vdW MFTJs with various numbers of barrier layers. By controlling the polarization orientation of the ferroelectric barrier MnSe and the magnetization alignment of the ferromagnetic electrodes Fe3GeTe2, the MnSe-based MFTJs exhibit four nonvolatile resistance states, with the TMR (TER) becoming higher and reaching a maximum of 1.4 × 106% (4114%) as the MnSe layers increase from a bilayer to a tetralayer. Using asymmetric Cu and Fe3GeTe2 as the electrodes, the TER can be further improved from 349% to 618%. Moreover, there is a perfect spin filtering effect in these MFTJs. This work demonstrates the potential applications of MnSe-based devices in multistate nonvolatile memories and spin filters, which will stimulate experimental studies on layer-controllable spintronic devices.

17.
Nature ; 560(7719): 484-488, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30111842

RESUMEN

In zebrafish, Müller glia (MG) are a source of retinal stem cells that can replenish damaged retinal neurons and restore vision1. In mammals, however, MG do not spontaneously re-enter the cell cycle to generate a population of stem or progenitor cells that differentiate into retinal neurons. Nevertheless, the regenerative machinery may exist in the mammalian retina, as retinal injury can stimulate MG proliferation followed by limited neurogenesis2-7. Therefore, there is still a fundamental question regarding whether MG-derived regeneration can be exploited to restore vision in mammalian retinas. Gene transfer of ß-catenin stimulates MG proliferation in the absence of injury in mouse retinas8. Here we report that following gene transfer of ß-catenin, cell-cycle-reactivated MG can be reprogrammed to generate rod photoreceptors by subsequent gene transfer of transcription factors essential for rod cell fate specification and determination. MG-derived rods restored visual responses in Gnat1rd17Gnat2cpfl3 double mutant mice, a model of congenital blindness9,10, throughout the visual pathway from the retina to the primary visual cortex. Together, our results provide evidence of vision restoration after de novo MG-derived genesis of rod photoreceptors in mammalian retinas.


Asunto(s)
Reprogramación Celular/genética , Neurogénesis , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Madre/citología , Animales , Ceguera/congénito , Ceguera/genética , Ceguera/terapia , Ciclo Celular , Proliferación Celular/genética , Modelos Animales de Enfermedad , Femenino , Subunidades alfa de la Proteína de Unión al GTP/genética , Proteínas de Unión al GTP Heterotriméricas/genética , Masculino , Ratones , Neuroglía/citología , Neuroglía/metabolismo , Medicina Regenerativa , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducina/genética , Corteza Visual/citología , Vías Visuales , beta Catenina/genética , beta Catenina/metabolismo
18.
BMC Psychiatry ; 24(1): 331, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689265

RESUMEN

BACKGROUND: To examine the factor structure and psychometric properties of the Patient Health Questionnaire for Adolescents (PHQ-A) in Chinese children and adolescents with major depressive disorder (MDD). METHODS: A total of 248 MDD patients aged between 12 and 18 years were recruited and evaluated by the Patient Health Questionnaire for Adolescents (PHQ-A), the Center for Epidemiological Survey Depression Scale (CES-D), the Mood and Feelings Questionnaire (MFQ), and the improved Clinical Global Impression Scale, Severity item (iCGI-S). Thirty-one patients were selected randomly to complete the PHQ-A again one week later. Confirmatory factor analysis (CFA) was used to test the construct validity of the scale. Reliability was evaluated by Macdonald Omega coefficient. Pearson correlation coefficient was used to assess the item-total correlation and the correlation of PHQ-A with CES-D and MFQ respectively. Spearman correlation coefficient was used to assess test-retest reliability. The optimal cut-off value, sensitivity, and specificity of the PHQ-A were achieved by estimating the Receiver Operating Characteristics (ROC) curve. RESULTS: CFA reported adequate loadings for all items, except for item 3. Macdonald Omega coefficient of the PHQ-A was 0.87. The Spearman correlation coefficient of the test-retest reliability was 0.70. The Pearson correlation coefficients of the PHQ-A with CES-D and MFQ were 0.87 and 0.85, respectively (p < 0.01). By taking the iCGI-S as the remission criteria for MDD, the optimal cut-off value, sensitivity and specificity of the PHQ-A were 7, 98.7%, 94.7% respectively. CONCLUSION: The PHQ-A presented as a unidimensional construct and demonstrated satisfactory reliability and validity among the Chinese children and adolescents with MDD. A cut-off value of 7 was suggested for remission.


Asunto(s)
Trastorno Depresivo Mayor , Psicometría , Humanos , Adolescente , Masculino , Femenino , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/psicología , Reproducibilidad de los Resultados , Niño , China , Análisis Factorial , Cuestionario de Salud del Paciente , Encuestas y Cuestionarios/normas , Escalas de Valoración Psiquiátrica/normas , Sensibilidad y Especificidad , Pueblo Asiatico/psicología , Pueblos del Este de Asia
19.
J Environ Manage ; 367: 121997, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111002

RESUMEN

Using Hermetia illucens, or Black Soldier Fly (BSF) frass as an organic fertilizer is becoming increasingly popular in many countries. As a byproduct derived from BSF larvae that feed on organic waste, BSF frass has tremendous potential for preserving the environment and promoting the circular economy. Since it has diverse biochemical properties influenced by various production and environmental factors, further research is needed to evaluate its potential for extensive use in crop production and agriculture. Our review summarizes recent findings in BSF frass research by describing its composition and biochemical properties derived from various studies, including nutrient contents, biostimulant compounds, and microbial profiles. We also discuss BSF frass fertilizers' effectiveness on plant growth and contribution to environmental sustainability. Great compositions of BSF frass increase the quality of plants/crops by establishing healthy soil and improving the plants' immune systems. Special emphasis is given to potentially replacing conventional fertilizer to create a more sustainable cropping system via organic farming. Besides, we discuss the capability of BSF bioconversion to reduce greenhouse gas emissions and improve the socioeconomic aspect. The prospects of BSF frass in promoting a healthy environment by reducing greenhouse gas emissions and improving the socioeconomic aspects of communities have also been highlighted. Overall, BSF frass offers an alternative approach that can be integrated with conventional fertilizers to optimize the cropping system. Further studies are needed to fully explore its potential in establishing sustainable system that can enhance socioeconomic benefits in the future.


Asunto(s)
Fertilizantes , Animales , Suelo/química , Simuliidae/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos
20.
Bull Environ Contam Toxicol ; 113(2): 19, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080019

RESUMEN

Environmental concentrations of antimicrobials can inhibit Cyanobacteria, but little is known about their effects on Cyanobacteria-blooming freshwater ecosystem. Here, a 21 days' outdoor freshwater mesocosm experiment was established to study effects of single and combined tetracycline, triclocarban and zinc at environmental concentrations on microbial community, microbial function and antimicrobial resistance using amplicon- and metagenomic-based methods. Results showed that three chemicals reshaped the microbial community with magnified effects by chemical combinations. Relative abundance of Cyanobacteria was decreased in all chemical groups, especially from 74.5 to 0.9% in combination of three chemicals. Microbial community networks were more simplified after exposure. Proteobacteria and Bacteroidetes predominated in Cyanobacteria-degraded ecosystems, and their relative abundances were significantly correlated with antibiotic resistome, suggesting that they might host antibiotic resistance genes. Notably, relative abundance (copy per 16 S rRNA gene) of total antibiotic resistome reached five to nine folds higher than the initial abundance in chemical-combined groups. The affected antibiotic resistance genes referred to a wide range of antibiotic classes. However, weak effects were detected on biocide/metal resistance and microbial virulence. Three chemicals posed complicated effects on microbial function, some of which had consistent variations across the groups, while some varied greatly in chemical groups. The findings highlight sensitivity of Cyanobacteria-blooming ecosystem to antimicrobials.


Asunto(s)
Carbanilidas , Cianobacterias , Ecosistema , Agua Dulce , Contaminantes Químicos del Agua , Zinc , Cianobacterias/efectos de los fármacos , Cianobacterias/genética , Zinc/toxicidad , Carbanilidas/toxicidad , Agua Dulce/microbiología , Contaminantes Químicos del Agua/toxicidad , Antibacterianos/toxicidad , Antibacterianos/farmacología , Tetraciclina/farmacología , Tetraciclina/toxicidad , Microbiota/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA