Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Nature ; 605(7908): 76-83, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508775

RESUMEN

Living cilia stir, sweep and steer via swirling strokes of complex bending and twisting, paired with distinct reverse arcs1,2. Efforts to mimic such dynamics synthetically rely on multimaterial designs but face limits to programming arbitrary motions or diverse behaviours in one structure3-8. Here we show how diverse, complex, non-reciprocal, stroke-like trajectories emerge in a single-material system through self-regulation. When a micropost composed of photoresponsive liquid crystal elastomer with mesogens aligned oblique to the structure axis is exposed to a static light source, dynamic dances evolve as light initiates a travelling order-to-disorder transition front, transiently turning the structure into a complex evolving bimorph that twists and bends via multilevel opto-chemo-mechanical feedback. As captured by our theoretical model, the travelling front continuously reorients the molecular, geometric and illumination axes relative to each other, yielding pathways composed from series of twisting, bending, photophobic and phototropic motions. Guided by the model, here we choreograph a wide range of trajectories by tailoring parameters, including illumination angle, light intensity, molecular anisotropy, microstructure geometry, temperature and irradiation intervals and duration. We further show how this opto-chemo-mechanical self-regulation serves as a foundation for creating self-organizing deformation patterns in closely spaced microstructure arrays via light-mediated interpost communication, as well as complex motions of jointed microstructures, with broad implications for autonomous multimodal actuators in areas such as soft robotics7,9,10, biomedical devices11,12 and energy transduction materials13, and for fundamental understanding of self-regulated systems14,15.

2.
Proc Natl Acad Sci U S A ; 120(39): e2309822120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725651

RESUMEN

External control of chemical reactions in biological settings with spatial and temporal precision is a grand challenge for noninvasive diagnostic and therapeutic applications. While light is a conventional stimulus for remote chemical activation, its penetration is severely attenuated in tissues, which limits biological applicability. On the other hand, ultrasound is a biocompatible remote energy source that is highly penetrant and offers a wide range of functional tunability. Coupling ultrasound to the activation of specific chemical reactions under physiological conditions, however, remains a challenge. Here, we describe a synergistic platform that couples the selective mechanochemical activation of mechanophore-functionalized polymers with biocompatible focused ultrasound (FUS) by leveraging pressure-sensitive gas vesicles (GVs) as acousto-mechanical transducers. The power of this approach is illustrated through the mechanically triggered release of covalently bound fluorogenic and therapeutic cargo molecules from polymers containing a masked 2-furylcarbinol mechanophore. Molecular release occurs selectively in the presence of GVs upon exposure to FUS under physiological conditions. These results showcase the viability of this system for enabling remote control of specific mechanochemical reactions with spatiotemporal precision in biologically relevant settings and demonstrate the translational potential of polymer mechanochemistry.


Asunto(s)
Fuentes Generadoras de Energía , Polímeros , Transductores , Extremidad Superior
3.
Proc Natl Acad Sci U S A ; 119(43): e2211042119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252006

RESUMEN

Various forms of ecological monitoring and disease diagnosis rely upon the detection of amphiphiles, including lipids, lipopolysaccharides, and lipoproteins, at ultralow concentrations in small droplets. Although assays based on droplets' wettability provide promising options in some cases, their reliance on the measurements of surface and bulk properties of whole droplets (e.g., contact angles, surface tensions) makes it difficult to monitor trace amounts of these amphiphiles within small-volume samples. Here, we report a design principle in which self-assembled monolayer-functionalized microstructured surfaces coated with silicone oil create locally disordered regions within a droplet's contact lines to effectively concentrate amphiphiles within the areas that dominate the droplet static friction. Remarkably, such surfaces enable the ultrasensitive, naked-eye detection of amphiphiles through changes in the droplets' sliding angles, even when the concentration is four to five orders of magnitude below their critical micelle concentration. We develop a thermodynamic model to explain the partitioning of amphiphiles at the contact line by their cooperative association within the disordered, loosely packed regions of the self-assembled monolayer. Based on this local analyte concentrating effect, we showcase laboratory-on-a-chip surfaces with positionally dependent pinning forces capable of both detecting industrially and biologically relevant amphiphiles (e.g., bacterial endotoxins), as well as sorting aqueous droplets into discrete groups based on their amphiphile concentrations. Furthermore, we demonstrate that the sliding behavior of amphiphile-laden aqueous droplets provides insight into the amphiphile's effective length, thereby allowing these surfaces to discriminate between analytes with highly disparate molecular sizes.


Asunto(s)
Micelas , Aceites de Silicona , Lipopolisacáridos , Tensión Superficial , Agua , Humectabilidad
4.
Anal Chem ; 96(17): 6540-6549, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38619937

RESUMEN

Composite materials built in part from living organisms have the potential to exhibit useful autonomous, adaptive, and self-healing behavior. The physicochemical, biological, and mechanical properties of such materials can be engineered through the genetic manipulation of their living components. Successful development of living materials will require not only new methods for design and preparation but also new analytical tools that are capable of real-time noninvasive mapping of chemical compositions. Here, we establish a strategy based on stimulated Raman scattering microscopy to monitor phosphatase-catalyzed mineralization of engineered bacterial films in situ. Real-time label-free imaging elucidates the mineralization process, quantifies both the organic and inorganic components of the material as functions of time, and reveals spatial heterogeneity at multiple scales. In addition, we correlate the mechanical performance of films with the extent of mineralization. This work introduces a promising strategy for quantitatively analyzing living materials, which should contribute to the accelerated development of such materials in the future.


Asunto(s)
Microscopía Óptica no Lineal , Microscopía Óptica no Lineal/métodos , Espectrometría Raman/métodos , Factores de Tiempo , Monoéster Fosfórico Hidrolasas/metabolismo
5.
Angew Chem Int Ed Engl ; : e202409409, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008227

RESUMEN

Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast-charging capability and low-temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial Li-ion transport. Here we report a wide-temperature-range ester-based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film-forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three-electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of -80°C to 80°C and outstanding fast-charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2% capacity retention after 1200 cycles (2 C) and 10-min charge to 89% (5 C) at 25°C and provides reliable power even at -80°C.

6.
J Am Chem Soc ; 145(14): 8001-8006, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36988463

RESUMEN

The solid electrolyte interphase (SEI) is regarded as the most important yet least understood component in Li-ion batteries. Considerable effort has been devoted to unravelling its chemistry, structure, and ion-transport mechanism; however, the nucleation and growth mode of SEI, which underlies all these properties, remains the missing piece. We quantify the growth mode of two representative SEIs on carbonaceous anodes based on classical nucleation theories and in situ atomic force microscopy imaging. The formation of inorganic SEI obeys the mixed 2D/3D growth model and is highly dependent on overpotential, whereby large overpotential favors 2D growth. Organic SEI strictly follows the 2D instantaneous nucleation and growth model regardless of overpotential and enables perfect epitaxial passivation of electrodes. We further demonstrate the use of large current pulses during battery formation to promote 2D inorganic SEI growth and improve capacity retention. These insights offer the potential to tailor desired interphases at the nanoscale for future electrochemical devices.

7.
Angew Chem Int Ed Engl ; 62(37): e202303888, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37186770

RESUMEN

Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub-zero Celsius operation, especially below -20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li+ diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low-temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low-temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low-temperature electrolytes in the past 40 years (1983-2022), followed by a comprehensive summary of the research progress as well as introducing the state-of-the-art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low-temperature electrolytes with particular emphasis on mechanism analysis and practical application.

8.
Angew Chem Int Ed Engl ; 62(4): e202214828, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36383099

RESUMEN

Extreme fast charging (XFC) of high-energy Li-ion batteries is a key enabler of electrified transportation. While previous studies mainly focused on improving Li ion mass transport in electrodes and electrolytes, the limitations of charge transfer across electrode-electrolyte interfaces remain underexplored. Herein we unravel how charge transfer kinetics dictates the fast rechargeability of Li-ion cells. Li ion transfer across the cathode-electrolyte interface is found to be rate-limiting during XFC, but the charge transfer energy barrier at both the cathode and anode have to be reduced simultaneously to prevent Li plating, which is achieved through electrolyte engineering. By unlocking charge transfer limitations, 184 Wh kg-1 pouch cells demonstrate stable XFC (10-min charge to 80 %) which is otherwise unachievable, and the lifetime of 245 Wh kg-1 21700 cells is quintupled during fast charging (25-min charge to 80 %).

9.
Biophys J ; 121(21): 4221-4228, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36081347

RESUMEN

Acoustic reporter genes based on gas vesicles (GVs) have enabled the use of ultrasound to noninvasively visualize cellular function in vivo. The specific detection of GV signals relative to background acoustic scattering in tissues is facilitated by nonlinear ultrasound imaging techniques taking advantage of the sonomechanical buckling of GVs. However, the effect of geometry on the buckling behavior of GVs under exposure to ultrasound has not been studied. To understand such geometric effects, we developed computational models of GVs of various lengths and diameters and used finite element simulations to predict their threshold buckling pressures and postbuckling deformations. We demonstrated that the GV diameter has an inverse cubic relation to the threshold buckling pressure, whereas length has no substantial effect. To complement these simulations, we experimentally probed the effect of geometry on the mechanical properties of GVs and the corresponding nonlinear ultrasound signals. The results of these experiments corroborate our computational predictions. This study provides fundamental insights into how geometry affects the sonomechanical properties of GVs, which, in turn, can inform further engineering of these nanostructures for high-contrast, nonlinear ultrasound imaging.


Asunto(s)
Acústica , Nanoestructuras , Ultrasonografía/métodos , Nanoestructuras/química
10.
J Am Chem Soc ; 144(1): 212-218, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34889609

RESUMEN

Lithium (Li) metal anodes are attractive for high-energy-density batteries. Dead Li is inevitably generated during the delithiation of deposited Li based on a conversion reaction, which severely depletes active Li and electrolyte and induces a short lifespan. In this contribution, a successive conversion-deintercalation (CTD) delithiation mechanism is proposed by manipulating the overpotential of the anode to restrain the generation of dead Li. The delithiation at initial cycles is solely carried out by a conversion reaction of Li metal. When the overpotential of the anode increases over the delithiation potential of lithiated graphite after cycling, a deintercalation reaction is consequently triggered to complete a whole CTD delithiation process, largely reducing the formation of dead Li due to a highly reversible deintercalation reaction. Under practical conditions, the working batteries based on a CTD delithiation mechanism maintain 210 cycles with a capacity retention of 80% in comparison to 110 cycles of a bare Li anode. Moreover, a 1 Ah pouch cell with a CTD delithiation mechanism operates for 150 cycles. The work ingeniously restrains the generation of dead Li by manipulating the delithiation mechanisms of the anode and contributes to a fresh concept for the design of practical composite Li anodes.

11.
Angew Chem Int Ed Engl ; 61(29): e202205697, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35532047

RESUMEN

Contact prelithiation is an important strategy to compensate the initial capacity loss of lithium-ion batteries. However, the dead Li generated from inadequate Li conversion reduces the cycling stability of rechargeable batteries. Herein a mono-solvent dimethyl carbonate (DMC) electrolyte was employed in contact prelithiation for the first time. We discover that the low-organic-content raw electrolyte interphase (REI) induced by this electrolyte on Li source and anode is a mixed ion/electron conductor. Therefore, electron channels can be maintained even when the Li source has been completely wrapped by the DMC-derived REI. As a result, an outstanding Li source utilization of 92.8 % and a negligible dead Li yield can be realized. This strategy renders batteries with a very high initial Coulombic efficiency (90.0 %) and an excellent capacity retention (94.9 %) over 210 cycles, highlighting the significance of REI for effective contact prelithiation.

12.
Angew Chem Int Ed Engl ; 61(13): e202115602, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-34951089

RESUMEN

Lithium (Li) metal has been considered a promising anode for next-generation high-energy-density batteries. However, the low reversibility and intricate Li loss hinder the widespread implementation of Li metal batteries. Herein, we quantitatively differentiate the dynamic evolution of inactive Li, and decipher the fundamental interplay among dynamic Li loss, electrolyte chemistry, and the structure of the solid electrolyte interphase (SEI). The actual dominant form in inactive Li loss is practically determined by the relative growth rates of dead Li0 and SEI Li+ because of the persistent evolution of the Li metal interface during cycling. Distinct inactive Li evolution scenarios are disclosed by ingeniously tuning the inorganic anion-derived SEI chemistry with a low amount of film-forming additive. An optimal polymeric film enabler of 1,3-dioxolane is demonstrated to derive a highly uniform multilayer SEI and decreased SEI Li+ /dead Li0 growth rates, thus achieving enhanced Li cycling reversibility.

13.
Angew Chem Int Ed Engl ; 61(39): e202210365, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35938731

RESUMEN

The access to full performance of state-of-the-art Li-ion batteries (LIBs) is hindered by the mysterious lithium plating behavior. A rapid quantified lithium plating determination method compatible with actual working conditions is an urgent necessity for safe working LIBs. In this contribution, the relationship between electrical double layer (EDL) capacitance and electrochemical active surface area (ECSA) of graphite anodes during the Li-ion intercalation and Li plating processes is unveiled. We propose an operando lithium plating determination method based on the dynamic capacitance measurement (DCM) test. Reasonable selection of alternating current (AC) frequency protects the anodic responses from the interference of cathodic responses, which allows DCM to be applied in practical LIBs. The onset of lithium plating can be quantitatively traced, demonstrating the promise for real-time operando determination for lithium plating in a working battery.

14.
Biophys J ; 120(13): 2701-2709, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34022233

RESUMEN

The structure-driven assembly of multimeric protein complexes and the formation of intracellular phase-like protein condensates have been the subject of intense research. However, the assembly of larger superstructures comprising cellular components, such as protein nanoparticles driven by general physical rather than specific biochemical interactions, remains relatively uncharacterized. Here, we use gas vesicles (GVs)-genetically encoded protein nanoparticles that form ordered intracellular clusters-as a model system to study the forces driving multiparticle assembly under cytoplasm-like conditions. Our calculations and experimental results show that the ordered assembly of GVs can be achieved by screening their mutual electrostatic repulsion with electrolytes and creating a crowding force with dissolved macromolecules. The precise balance of these forces results in different packing configurations. Biomacromolecules such as polylysine and DNA are capable of driving GV clustering. These results provide basic insights into how physically driven interactions affect the formation of protein superstructures, offer guidance for manipulating nanoparticle assembly in cellular environments through synthetic biology methods, and inform research on the biotechnology applications of GVs.


Asunto(s)
Nanopartículas , Citoplasma , ADN , Sustancias Macromoleculares , Electricidad Estática
15.
Proc Natl Acad Sci U S A ; 115(51): 12950-12955, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30514819

RESUMEN

Dynamic functions of biological organisms often rely on arrays of actively deformable microstructures undergoing a nearly unlimited repertoire of predetermined and self-regulated reconfigurations and motions, most of which are difficult or not yet possible to achieve in synthetic systems. Here, we introduce stimuli-responsive microstructures based on liquid-crystalline elastomers (LCEs) that display a broad range of hierarchical, even mechanically unfavored deformation behaviors. By polymerizing molded prepolymer in patterned magnetic fields, we encode any desired uniform mesogen orientation into the resulting LCE microstructures, which is then read out upon heating above the nematic-isotropic transition temperature (TN-I) as a specific prescribed deformation, such as twisting, in- and out-of-plane tilting, stretching, or contraction. By further introducing light-responsive moieties, we demonstrate unique multifunctionality of the LCEs capable of three actuation modes: self-regulated bending toward the light source at T < TN-I, magnetic-field-encoded predetermined deformation at T > TN-I, and direction-dependent self-regulated motion toward the light at T > TN-I We develop approaches to create patterned arrays of microstructures with encoded multiple area-specific deformation modes and show their functions in responsive release of cargo, image concealment, and light-controlled reflectivity. We foresee that this platform can be widely applied in switchable adhesion, information encryption, autonomous antennae, energy harvesting, soft robotics, and smart buildings.

16.
Chem Soc Rev ; 49(12): 3806-3833, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32478786

RESUMEN

With the impetus to accelerate worldwide market adoption of electrical vehicles and afford consumer electronics with better user experience, advancing fast-charging technology is an inevitable trend. However, current high-energy lithium-ion batteries are unable to support ultrafast power input without any adverse consequences, with the capacity fade and safety concerns of the mainstream graphite-based anodes being the key technological barrier. The aim of this review is to summarise the fundamentals, challenges, and solutions to enable graphite anodes that are capable of high-rate charging. First, we explore the complicated yet intriguing graphite-electrolyte interface during intercalation based on existing theories. Second, we analyse the key dilemmas facing fast-charging graphite anodes. Finally, some promising strategies proposed during the past few years are highlighted so as to outline current trends and future perspectives in this field.

17.
Angew Chem Int Ed Engl ; 60(15): 8521-8525, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33496038

RESUMEN

Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant advances have been achieved on the structure and composition of SEI as well as on the possible ion transport mechanism. However, the nucleation and growth mechanism of SEI catches little attention, which requires the establishment of isothermal electrochemical crystallization theory. Herein we explore the virgin territory of electrochemically crystallized SEI. By using potentiostatic method to regulate the decomposition of anions, an anion-derived SEI forms on graphite surface at atomic scale. After fitting the cur-rent-time transients with Laviron theory and Avrami formula, we conclude that the formation of anion-derived interface is surface reaction controlled and obeys the two-dimensional (2D) progressive nucleation and growth model. Atomic force microscope (AFM) images emphasize the conclusion, which reveals the mystery of isothermal electrochemical crystallization of SEI.

18.
Angew Chem Int Ed Engl ; 60(7): 3402-3406, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33107707

RESUMEN

Lithium-ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast-charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high-concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2-trifluoroethyl) ether as the diluent, enables fast-charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co-intercalation into graphite and achieve highly reversible Li+ intercalation/de-intercalation. The graphite | Li cells exhibit fast-charging potential (340 mAh g-1 at 0.2 C and 220 mAh g-1 at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low-temperature performance.

19.
Angew Chem Int Ed Engl ; 60(23): 13007-13012, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33793052

RESUMEN

Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium-ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of "dead Li" can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi0.5 Mn0.3 Co0.2 O2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast-charging capability, low-temperature performance, and energy density of practical lithium-ion batteries.

20.
Angew Chem Int Ed Engl ; 60(33): 18031-18036, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34058049

RESUMEN

Lithium metal batteries are considered a promising candidate for high-energy-density energy storage. However, the strong reducibility and high reactivity of lithium lead to low Coulombic efficiency when contacting oxidants, such as lithium polysulfide caused by the serious "shuttle effect" in lithium-sulfur batteries. Herein we design selectively permeable lithium-ion channels on lithium metal surface, which allow lithium ions to pass through by electrochemical overpotential, while the polysulfides are effectively blocked due to the much larger steric hindrance than lithium ions. The selective permeation of lithium ions through the channels is further elucidated by the molecular simulation and visualization experiment. Consequently, a prolonged cycle life of 75 cycles and high Coulombic efficiency of 99 % are achieved in a practical Li-S pouch cell with limited amounts of lithium and electrolyte, confirming the unique role the selective ion permeation plays in protecting highly reactive alkali metal anodes in working batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA