Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Invest New Drugs ; 37(1): 1-8, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29667135

RESUMEN

The five-year survival rate for patients with head and neck squamous cell carcinoma (HNSCC) has remained at ~50% for the past 30 years despite advances in treatment. Tigilanol tiglate (TT, also known as EBC-46) is a novel diterpene ester that induces cell death in HNSCC in vitro and in mouse models, and has recently completed Phase I human clinical trials. The aim of this study was to optimise efficacy of TT treatment by altering different administration parameters. The tongue SCC cell line (SCC-15) was identified as the line with the lowest efficacy to treatment. Subcutaneous xenografts of SCC-15 cells were grown in BALB/c Foxn1nu and NOD/SCID mice and treated with intratumoral injection of 30 µg TT or a vehicle only control (40% propylene glycol (PG)). Greater efficacy of TT treatment was found in the BALB/c Foxn1nu mice compared to NOD/SCID mice. Immunohistochemical analysis indicated a potential role of the host's innate immune system in this difference, specifically neutrophil infiltration. Neither fractionated doses of TT nor the use of a different excipiant led to significantly increased efficacy. This study confirmed that TT in 40% PG given intratumorally as a single bolus dose was the most efficacious treatment for a tongue SCC mouse model.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Diterpenos/farmacología , Infiltración Neutrófila/efectos de los fármacos , Neoplasias de la Lengua/tratamiento farmacológico , Animales , Apoptosis , Carcinoma de Células Escamosas/patología , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Neoplasias de la Lengua/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Immunother Cancer ; 12(4)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658031

RESUMEN

BACKGROUND: Tigilanol tiglate (TT) is a protein kinase C (PKC)/C1 domain activator currently being developed as an intralesional agent for the treatment of various (sub)cutaneous malignancies. Previous work has shown that intratumoral (I.T.) injection of TT causes vascular disruption with concomitant tumor ablation in several preclinical models of cancer, in addition to various (sub)cutaneous tumors presenting in the veterinary clinic. TT has completed Phase I dose escalation trials, with some patients showing signs of abscopal effects. However, the exact molecular details underpinning its mechanism of action (MoA), together with its immunotherapeutic potential in oncology remain unclear. METHODS: A combination of microscopy, luciferase assays, immunofluorescence, immunoblotting, subcellular fractionation, intracellular ATP assays, phagocytosis assays and mixed lymphocyte reactions were used to probe the MoA of TT in vitro. In vivo studies with TT used MM649 xenograft, CT-26 and immune checkpoint inhibitor refractory B16-F10-OVA tumor bearing mice, the latter with or without anti-programmed cell death 1 (PD-1)/anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) mAb treatment. The effect of TT at injected and non-injected tumors was also assessed. RESULTS: Here, we show that TT induces the death of endothelial and cancer cells at therapeutically relevant concentrations via a caspase/gasdermin E-dependent pyroptopic pathway. At therapeutic doses, our data demonstrate that TT acts as a lipotoxin, binding to and promoting mitochondrial/endoplasmic reticulum (ER) dysfunction (leading to unfolded protein responsemt/ER upregulation) with subsequent ATP depletion, organelle swelling, caspase activation, gasdermin E cleavage and induction of terminal necrosis. Consistent with binding to ER membranes, we found that TT treatment promoted activation of the integrated stress response together with the release/externalization of damage-associated molecular patterns (HMGB1, ATP, calreticulin) from cancer cells in vitro and in vivo, characteristics indicative of immunogenic cell death (ICD). Confirmation of ICD in vivo was obtained through vaccination and rechallenge experiments using CT-26 colon carcinoma tumor bearing mice. Furthermore, TT also reduced tumor volume, induced immune cell infiltration, as well as improved survival in B16-F10-OVA tumor bearing mice when combined with immune checkpoint blockade. CONCLUSIONS: These data demonstrate that TT is an oncolytic small molecule with multiple targets and confirms that cell death induced by this compound has the potential to augment antitumor responses to immunotherapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Muerte Celular Inmunogénica , Animales , Ratones , Muerte Celular Inmunogénica/efectos de los fármacos , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/terapia
3.
Sci Transl Med ; 14(662): eabn3758, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36103515

RESUMEN

The management of antibiotic-resistant, bacterial biofilm infections in chronic skin wounds is an increasing clinical challenge. Despite advances in diagnosis, many patients do not derive benefit from current anti-infective/antibiotic therapies. Here, we report a novel class of naturally occurring and semisynthetic epoxy-tiglianes, derived from the Queensland blushwood tree (Fontainea picrosperma), and demonstrate their antimicrobial activity (modifying bacterial growth and inducing biofilm disruption), with structure/activity relationships established against important human pathogens. In vitro, the lead candidate EBC-1013 stimulated protein kinase C (PKC)-dependent neutrophil reactive oxygen species (ROS) induction and NETosis and increased expression of wound healing-associated cytokines, chemokines, and antimicrobial peptides in keratinocytes and fibroblasts. In vivo, topical EBC-1013 induced rapid resolution of infection with increased matrix remodeling in acute thermal injuries in calves. In chronically infected diabetic mouse wounds, treatment induced cytokine/chemokine production, inflammatory cell recruitment, and complete healing (in six of seven wounds) with ordered keratinocyte differentiation. These results highlight a nonantibiotic approach involving contrasting, orthogonal mechanisms of action combining targeted biofilm disruption and innate immune induction in the treatment of chronic wounds.


Asunto(s)
Forboles , Animales , Antibacterianos/farmacología , Biopelículas , Bovinos , Humanos , Queratinocitos , Ratones , Cicatrización de Heridas
4.
Sci Rep ; 11(1): 207, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420238

RESUMEN

The long-standing perception of Protein Kinase C (PKC) as a family of oncoproteins has increasingly been challenged by evidence that some PKC isoforms may act as tumor suppressors. To explore the hypothesis that activation, rather than inhibition, of these isoforms is critical for anticancer activity, we isolated and characterized a family of 16 novel phorboids closely-related to tigilanol tiglate (EBC-46), a PKC-activating epoxytigliane showing promising clinical safety and efficacy for intratumoral treatment of cancers. While alkyl branching features of the C12-ester influenced potency, the 6,7-epoxide structural motif and position was critical to PKC activation in vitro. A subset of the 6,7-epoxytiglianes were efficacious against established tumors in mice; which generally correlated with in vitro activation of PKC. Importantly, epoxytiglianes without evidence of PKC activation showed limited antitumor efficacy. Taken together, these findings provide a strong rationale to reassess the role of PKC isoforms in cancer, and suggest in some situations their activation can be a promising strategy for anticancer drug discovery.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Diterpenos/química , Diterpenos/farmacología , Proteína Quinasa C/metabolismo , Animales , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos
5.
Asian J Surg ; 41(3): 250-256, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28286020

RESUMEN

BACKGROUND/OBJECTIVE: Postoperative pancreatic fistula (POPF) remains an important cause of morbidity and mortality after pancreaticoduodenectomy. Pancreaticogastrostomy (PG) as a reconstruction method after pancreaticoduodenectomy is a safe and optional surgical technique in decreasing the risk of POPF. In this study, a retrospective analysis was carried out to evaluate a new modification of PG technique that uses a two-layer anastomoses with an internal stent. METHODS: Forty-seven patients underwent this newly modified PG technique between February 2012 and August 2016. Demographics, histopathological findings, type of surgery performed, perioperative parameters, postoperative length of stay, postoperative complications and interventional procedures, follow-up, and mortality data were collected and analyzed. Clavien-Dindo classification was used to grade the complications' severity. RESULTS: Postoperative mortality was 4.25%, unrelated to POPF, and postoperative morbidity was 44.68%. Thirteen patients had severe (>Grade IIIa) complications, according to Clavien-Dindo classification. As classified in accordance to the International Study Group of Pancreatic Fistula, 24 (51.06%) patients developed Grade A POPF, and no occurrence of Grade B/C POPF was noted. All patients recovered uneventfully with successful treatment interventions. CONCLUSION: The reported PG anastomotic technique is a safe and dependable reconstruction procedure with acceptable morbidity and mortality.


Asunto(s)
Páncreas/cirugía , Fístula Pancreática/prevención & control , Pancreaticoduodenectomía , Complicaciones Posoperatorias/prevención & control , Stents , Estómago/cirugía , Adulto , Anciano , Anastomosis Quirúrgica/instrumentación , Anastomosis Quirúrgica/métodos , Anastomosis Quirúrgica/mortalidad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Fístula Pancreática/epidemiología , Fístula Pancreática/etiología , Pancreaticoduodenectomía/mortalidad , Complicaciones Posoperatorias/epidemiología , Estudios Retrospectivos , Resultado del Tratamiento
6.
Endocrine ; 52(3): 609-17, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26792793

RESUMEN

The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.


Asunto(s)
Empalme Alternativo , Ghrelina/genética , Secuencia de Aminoácidos , Animales , Regulación del Apetito/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Secuencia Conservada , Ghrelina/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas/genética , Isoformas de Proteínas/farmacología , Especificidad de la Especie
7.
Mol Cancer Ther ; 14(10): 2321-31, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26294743

RESUMEN

The triple-negative breast cancer (TNBC) subtype represents a cancer that is highly aggressive with poor patient outcome. Current preclinical success has been gained through synthetic lethality, targeting genome instability with PARP inhibition in breast cancer cells that harbor silencing of the homologous recombination (HR) pathway. Histone deacetylase inhibitors (HDACi) are a class of drugs that mediate epigenetic changes in expression of HR pathway genes. Here, we compare the activity of the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), the class I/IIa HDAC inhibitor valproic acid (VPA), and the HDAC1/2-specific inhibitor romidepsin (ROMI) for their capability to regulate DNA damage repair gene expression and in sensitizing TNBC to PARPi. We found that two of the HDACis tested, SAHA and ROMI, but not VPA, indeed inhibit HR repair and that RAD51, BARD1, and FANCD2 represent key proteins whose inhibition is required for HDACi-mediated therapy with PARP inhibition in TNBC. We also observed that restoration of BRCA1 function stabilizes the genome compared with mutant BRCA1 that results in enhanced polyploid population after combination treatment with HDACi and PARPi. Furthermore, we found that overexpression of the key HR protein RAD51 represents a mechanism for this resistance, promoting aberrant repair and the enhanced polyploidy observed. These findings highlight the key components of HR in guiding synthetic lethality with PARP inhibition and support the rationale for utilizing the novel combination of HDACi and PARPi against TNBC in the clinical setting.


Asunto(s)
Antineoplásicos/farmacología , Proteína BRCA1/genética , Bencimidazoles/farmacología , Expresión Génica/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteína BRCA1/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Daño del ADN , Enzimas Reparadoras del ADN/genética , Depsipéptidos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Epigénesis Genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Humanos , Ácidos Hidroxámicos/farmacología , Concentración 50 Inhibidora , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ácido Valproico/farmacología , Vorinostat
8.
Oncotarget ; 5(10): 3261-72, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24811120

RESUMEN

In contrast to extensive studies on familial breast cancer, it is currently unclear whether defects in DNA double strand break (DSB) repair genes play a role in sporadic breast cancer development and progression. We performed analysis of immunohistochemistry in an independent cohort of 235 were sporadic breast tumours. This analysis suggested that RAD51 expression is increased during breast cancer progression and metastasis and an oncogenic role for RAD51 when deregulated. Subsequent knockdown of RAD51 repressed cancer cell migration in vitro and reduced primary tumor growth in a syngeneic mouse model in vivo. Loss of RAD51 also inhibited associated metastasis not only in syngeneic mice but human xenografts and changed the metastatic gene expression profile of cancer cells, consistent with inhibition of distant metastasis. This demonstrates for the first time a new function of RAD51 that may underlie the proclivity of patients with RAD51 overexpression to develop distant metastasis. RAD51 is a potential biomarker and attractive drug target for metastatic triple negative breast cancer, with the capability to extend the survival of patients, which is less than 6 months.


Asunto(s)
Recombinasa Rad51/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica/genética , Metástasis de la Neoplasia , Análisis de Secuencia por Matrices de Oligonucleótidos , Recombinasa Rad51/metabolismo , Análisis de Matrices Tisulares , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA