Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Science ; 360(6386)2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29674564

RESUMEN

True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía/métodos , Animales , Movimiento Celular , Endocitosis , Ojo/ultraestructura , Humanos , Mitosis , Orgánulos , Análisis de la Célula Individual , Pez Cebra
2.
Mol Biol Cell ; 25(19): 2956-69, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25079692

RESUMEN

Once adherens junctions (AJs) are formed between polarized epithelial cells they must be maintained because AJs are constantly remodeled in dynamic epithelia. AJ maintenance involves endocytosis and subsequent recycling of E-cadherin to a precise location along the basolateral membrane. In the Drosophila pupal eye epithelium, Rho1 GTPase regulates AJ remodeling through Drosophila E-cadherin (DE-cadherin) endocytosis by limiting Cdc42/Par6/aPKC complex activity. We demonstrate that Rho1 also influences AJ remodeling by regulating the formation of DE-cadherin-containing, Rab11-positive recycling endosomes in Drosophila postmitotic pupal eye epithelia. This effect of Rho1 is mediated through Rok-dependent, but not MLCK-dependent, stimulation of myosin II activity yet independent of its effects upon actin remodeling. Both Rho1 and pMLC localize on endosomal vesicles, suggesting that Rho1 might regulate the formation of recycling endosomes through localized myosin II activation. This work identifies spatially distinct functions for Rho1 in the regulation of DE-cadherin-containing vesicular trafficking during AJ remodeling in live epithelia.


Asunto(s)
Uniones Adherentes/metabolismo , Cadherinas/metabolismo , Proteínas de Drosophila/metabolismo , Ojo/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Drosophila , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Endocitosis , Endosomas/metabolismo , Epitelio/metabolismo , Proteínas de Unión al GTP/metabolismo , Miosina Tipo II/metabolismo , Péptidos , Proteína Quinasa C/metabolismo , Transporte de Proteínas , Pupa/metabolismo , Proteínas de Unión al GTP rab/biosíntesis , Proteínas de Unión al GTP rho/genética , Quinasas Asociadas a rho
3.
Curr Biol ; 20(8): 677-86, 2010 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-20381350

RESUMEN

BACKGROUND: In response to stress- or tissue-damage-induced apoptosis, unaffected epithelial cells undergo compensatory proliferation to maintain the integrity of the epithelium. Proximal signals regulating this response are not fully understood, but c-Jun N-terminal kinase (JNK) activity appears to be critical for both apoptosis and compensatory proliferation. Disruption of epithelial cell apical-basal polarity occurs in early cancer development and is often correlated with increased proliferation by means not fully characterized. We considered whether disruption of the various polarity complexes could provide signals identifying damaged epithelial cells and thus lead to apoptosis-induced compensatory proliferation. RESULTS: We identify the Cdc42/Par6/atypical protein kinase C (aPKC) Par polarity complex as uniquely and specifically regulating apoptosis-induced compensatory proliferation in Drosophila epithelia. Genetic depletion of individual components or disruption of formation and localization of this complex, but not other polarity complexes, induces JNK-dependent apoptosis and JNK-dependent compensatory proliferation following radiation injury. When apoptosis execution is blocked, by p35 expression, Cdc42/Par6/aPKC-depleted tissues uniquely hyperproliferate, leading to tissue and organ overgrowth. Disruption of Cdc42/Par6/aPKC leads to activation of JNK through increased Rho1 and Rok activity and Rok's capacity to activate myosin but not F-actin. CONCLUSIONS: We show that the Cdc42/Par6/aPKC polarity complex influences both a physiologic compensatory proliferation response after irradiation injury and a contrived compensatory non-cell-autonomous hyperproliferation response when cell-autonomous apoptosis, resulting from Cdc42/Par6/aPKC disruption, is inhibited. These results suggest the possibility that in cancer where apoptotic regulation is disrupted, loss of Cdc42/Par6/aPKC polarity complex organization or localization could contribute to tumor hyperproliferation and explain how polarity disruption contributes to tumor development.


Asunto(s)
Apoptosis/fisiología , Proliferación Celular , Proteínas de Drosophila/metabolismo , Células Epiteliales/fisiología , Proteína Quinasa C/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Polaridad Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/fisiología , Células Epiteliales/citología , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Larva/anatomía & histología , Larva/fisiología , Larva/efectos de la radiación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína Quinasa C/genética , Interferencia de ARN , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
4.
Dev Cell ; 17(2): 187-98, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19686680

RESUMEN

Integrin expression and activity have been strongly correlated with developmental and pathological processes involving cell invasion through basement membranes. The role of integrins in mediating these invasions, however, remains unclear. Utilizing the genetically and visually accessible model of anchor cell (AC) invasion in C. elegans, we have recently shown that netrin signaling orients a specialized invasive cell membrane domain toward the basement membrane. Here, we demonstrate that the integrin heterodimer INA-1/PAT-3 plays a crucial role in AC invasion, in part by targeting the netrin receptor UNC-40 (DCC) to the AC's plasma membrane. Analyses of the invasive membrane components phosphatidylinositol 4,5-bisphosphate, the Rac GTPase MIG-2, and F-actin further indicate that INA-1/PAT-3 plays a broad role in promoting the plasma membrane association of these molecules. Taken together, these studies reveal a role for integrin in regulating the plasma membrane targeting and netrin-dependent orientation of a specialized invasive membrane domain.


Asunto(s)
Membrana Basal/metabolismo , Caenorhabditis elegans , Movimiento Celular/fisiología , Integrinas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Adhesión Celular/fisiología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Membrana Celular/metabolismo , Polaridad Celular , Genotipo , Integrinas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Factores de Crecimiento Nervioso/genética , Netrina-1 , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA