Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 449(7159): 228-32, 2007 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-17728716

RESUMEN

A subset of neurons in the brain, known as 'glucose-excited' neurons, depolarize and increase their firing rate in response to increases in extracellular glucose. Similar to insulin secretion by pancreatic beta-cells, glucose excitation of neurons is driven by ATP-mediated closure of ATP-sensitive potassium (K(ATP)) channels. Although beta-cell-like glucose sensing in neurons is well established, its physiological relevance and contribution to disease states such as type 2 diabetes remain unknown. To address these issues, we disrupted glucose sensing in glucose-excited pro-opiomelanocortin (POMC) neurons via transgenic expression of a mutant Kir6.2 subunit (encoded by the Kcnj11 gene) that prevents ATP-mediated closure of K(ATP) channels. Here we show that this genetic manipulation impaired the whole-body response to a systemic glucose load, demonstrating a role for glucose sensing by POMC neurons in the overall physiological control of blood glucose. We also found that glucose sensing by POMC neurons became defective in obese mice on a high-fat diet, suggesting that loss of glucose sensing by neurons has a role in the development of type 2 diabetes. The mechanism for obesity-induced loss of glucose sensing in POMC neurons involves uncoupling protein 2 (UCP2), a mitochondrial protein that impairs glucose-stimulated ATP production. UCP2 negatively regulates glucose sensing in POMC neurons. We found that genetic deletion of Ucp2 prevents obesity-induced loss of glucose sensing, and that acute pharmacological inhibition of UCP2 reverses loss of glucose sensing. We conclude that obesity-induced, UCP2-mediated loss of glucose sensing in glucose-excited neurons might have a pathogenic role in the development of type 2 diabetes.


Asunto(s)
Glucosa/metabolismo , Homeostasis , Neuronas/metabolismo , Obesidad/fisiopatología , Proopiomelanocortina/metabolismo , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/farmacología , Humanos , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/genética , Canales Iónicos/metabolismo , Glicósidos Iridoides , Iridoides/farmacología , Ratones , Ratones Obesos , Ratones Transgénicos , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Obesidad/inducido químicamente , Obesidad/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Proteína Desacopladora 2
2.
Cell Metab ; 3(6): 417-27, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16753577

RESUMEN

Uncoupling protein 2 (UCP2) negatively regulates insulin secretion. UCP2 deficiency (by means of gene knockout) improves obesity- and high glucose-induced beta cell dysfunction and consequently improves type 2 diabetes in mice. In the present study, we have discovered that the small molecule, genipin, rapidly inhibits UCP2-mediated proton leak. In isolated mitochondria, genipin inhibits UCP2-mediated proton leak. In pancreatic islet cells, genipin increases mitochondrial membrane potential, increases ATP levels, closes K(ATP) channels, and stimulates insulin secretion. These actions of genipin occur in a UCP2-dependent manner. Importantly, acute addition of genipin to isolated islets reverses high glucose- and obesity-induced beta cell dysfunction. Thus, genipin and/or chemically modified variants of genipin are useful research tools for studying biological processes thought to be controlled by UCP2. In addition, these agents represent lead compounds that comprise a starting point for the development of therapies aimed at treating beta cell dysfunction.


Asunto(s)
Glucosa/antagonistas & inhibidores , Compuestos Heterocíclicos con 3 Anillos/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Islotes Pancreáticos/efectos de los fármacos , Proteínas de Transporte de Membrana/efectos de los fármacos , Proteínas Mitocondriales/efectos de los fármacos , Obesidad/metabolismo , Piranos/farmacología , Adenosina Trifosfato/metabolismo , Aldehídos/antagonistas & inhibidores , Aldehídos/metabolismo , Animales , Medicamentos Herbarios Chinos/farmacología , Glucosa/farmacología , Compuestos Heterocíclicos con 3 Anillos/síntesis química , Compuestos Heterocíclicos con 3 Anillos/química , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/fisiología , Canales Iónicos , Glicósidos Iridoides , Iridoides , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Masculino , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Obesos , Mitocondrias/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/metabolismo , Conformación Molecular , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Protones , Piranos/química , Proteína Desacopladora 2
3.
Nat Neurosci ; 11(9): 998-1000, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19160495

RESUMEN

The physiologic importance of GABAergic neurotransmission in hypothalamic neurocircuits is unknown. To examine the importance of GABA release from agouti-related protein (AgRP) neurons (which also release AgRP and neuropeptide Y), we generated mice with an AgRP neuron-specific deletion of vesicular GABA transporter. These mice are lean, resistant to obesity and have an attenuated hyperphagic response to ghrelin. Thus, GABA release from AgRP neurons is important in regulating energy balance.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Metabolismo Energético/fisiología , Neuronas/metabolismo , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/metabolismo , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Absorciometría de Fotón/métodos , Proteína Relacionada con Agouti/genética , Análisis de Varianza , Animales , Núcleo Arqueado del Hipotálamo/citología , Peso Corporal/fisiología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Metabolismo Energético/genética , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Ghrelina/farmacología , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Consumo de Oxígeno/genética , Consumo de Oxígeno/fisiología , Técnicas de Placa-Clamp , Factores Sexuales , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
4.
J Neurosci Res ; 75(4): 491-8, 2004 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-14743432

RESUMEN

By using pharmacological and molecular approaches, we previously showed that the G-protein-coupled, extracellular calcium (Ca2+(o))-sensing receptor (CaR) regulates a large-conductance (approximately 140 pS), Ca(2+)-activated K+ channel [IK(Ca); CAKC] in U87 astrocytoma cells. Here we show that elevated Ca2+(o) stimulates extracellular-signal-regulated kinase (ERK1/2) and p38 MAP kinase (MAPK). The effect of high Ca2+(o) on p38 MAPK but not ERK1/2 is CaR mediated, insofar as transduction with a dominant-negative CaR (R185Q) using recombinant adeno-associated virus (rAAV) attenuated the activation of p38 MAPK but not of ERK1/2. p38 MAPK activation by the CaR is likely to be protein kinase C (PKC) independent, in that the pan-PKC inhibitor GF109203X failed to abolish the high-Ca2+(o)-induced phosphorylation of p38 MAPK. Consistently with our data on the activation of this kinase, we observed that inhibiting p38 MAPK blocked the activation of the CAKC induced by the specific pharmacological CaR activator NPS R-467. In contrast, inhibiting MEK1 only transiently inhibited the activation of this K+ channel by NPS R-467, despite the continued presence of the antagonist. Similarly to the lack of any effect of the PKC inhibitor on the activation of ERK1/2 and p38 MAPK, inhibiting PKC had no effect on NPS R-467-induced activation of this channel. Therefore, our data show that the CaR, acting via p38 MAPK, regulates a large-conductance CAKC in U87 cells, a process that is PKC independent. Large-conductance CAKCs play an important role in the regulation of cellular volume, so our results have important implications for glioma cell volume regulation.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Canales de Potasio Calcio-Activados/fisiología , Receptores Sensibles al Calcio/metabolismo , Calcio/farmacología , Línea Celular Tumoral , Humanos , Canales de Potasio Calcio-Activados/agonistas , Receptores Sensibles al Calcio/agonistas , Proteínas Quinasas p38 Activadas por Mitógenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA