Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(12): e1010513, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477175

RESUMEN

Walnut (Juglans) species are economically important hardwood trees cultivated worldwide for both edible nuts and high-quality wood. Broad-scale assessments of species diversity, evolutionary history, and domestication are needed to improve walnut breeding. In this study, we sequenced 309 walnut accessions from around the world, including 55 Juglans relatives, 98 wild Persian walnuts (J. regia), 70 J. regia landraces, and 86 J. regia cultivars. The phylogenetic tree indicated that J. regia samples (section Dioscaryon) were monophyletic within Juglans. The core areas of genetic diversity of J. regia germplasm were southwestern China and southern Asia near the Qinghai-Tibet Plateau and the Himalayas, and the uplift of the Himalayas was speculated to be the main factor leading to the current population dynamics of Persian walnut. The pattern of genomic variation in terms of nucleotide diversity, linkage disequilibrium, single nucleotide polymorphisms, and insertions/deletions revealed the domestication and selection footprints in Persian walnut. Selective sweep analysis, GWAS, and expression analysis further identified two transcription factors, JrbHLH and JrMYB6, that influence the thickness of the nut diaphragm as loci under selection during domestication. Our results elucidate the domestication and selection footprints in Persian walnuts and provide a valuable resource for the genomics-assisted breeding of this important crop.


Asunto(s)
Juglans , Juglans/genética , Filogenia , Sur de Asia , China , Genómica
2.
BMC Plant Biol ; 24(1): 211, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38519917

RESUMEN

Persian walnut (Juglans regia) and Manchurian walnut (Juglans mandshurica) belong to Juglandaceae, which are vulnerable, temperate deciduous perennial trees with high economical, ecological, and industrial values. 4-Coumarate: CoA ligase (4CL) plays an essential function in plant development, growth, and stress. Walnut production is challenged by diverse stresses, such as salinity, drought, and diseases. However, the characteristics and expression levels of 4CL gene family in Juglans species resistance and under salt stress are unknown. Here, we identified 36 Jr4CL genes and 31 Jm4CL genes, respectively. Based on phylogenetic relationship analysis, all 4CL genes were divided into three branches. WGD was the major duplication mode for 4CLs in two Juglans species. The phylogenic and collinearity analyses showed that the 4CLs were relatively conserved during evolution, but the gene structures varied widely. 4CLs promoter region contained multiply cis-acting elements related to phytohormones and stress responses. We found that Jr4CLs may be participated in the regulation of resistance to anthracnose. The expression level and some physiological of 4CLs were changed significantly after salt treatment. According to qRT-PCR results, positive regulation was found to be the main mode of regulation of 4CL genes after salt stress. Overall, J. mandshurica outperformed J. regia. Therefore, J. mandshurica can be used as a walnut rootstock to improve salt tolerance. Our results provide new understanding the potential functions of 4CL genes in stress tolerance, offer the theoretical genetic basis of walnut varieties adapted to salt stress, and provide an important reference for breeding cultivated walnuts for stress tolerance.


Asunto(s)
Juglans , Juglans/genética , Ligasas/genética , Filogenia , Fitomejoramiento , Estrés Salino/genética
3.
BMC Plant Biol ; 24(1): 109, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38350847

RESUMEN

BACKGROUND: The color of endopleura is a vital factor in determining the economic value and aesthetics appeal of nut. Walnuts (Juglans) are a key source of edible nuts, high in proteins, amino acids, lipids, carbohydrates. Walnut had a variety endopleura color as yellow, red, and purple. However, the regulation of walnut endopleura color remains little known. RESULTS: To understand the process of coloration in endopleura, we performed the integrative analysis of transcriptomes and metabolomes at two developmental stages of walnut endopleura. We obtained total of 4,950 differentially expressed genes (DEGs) and 794 metabolites from walnut endopleura, which are involved in flavonoid and phenolic biosynthesis pathways. The enrichment analysis revealed that the cinnamic acid, coniferyl alcohol, naringenin, and naringenin-7-O-glucoside were important metabolites in the development process of walnut endopleura. Transcriptome and metabolome analyses revealed that the DEGs and differentially regulated metabolites (DRMs) were significantly enriched in flavonoid biosynthesis and phenolic metabolic pathways. Through co-expression analysis, CHS (chalcone synthase), CHI (chalcone isomerase), CCR (cinnamoyl CoA reductase), CAD (cinnamyl alcohol dehydrogenase), COMT (catechol-Omethyl transferase), and 4CL (4-coumaroyl: CoA-ligase) may be the key genes that potentially regulate walnut endopleura color in flavonoid biosynthesis and phenolic metabolic pathways. CONCLUSIONS: This study illuminates the metabolic pathways and candidate genes that underlie the endopleura coloration in walnuts, lay the foundation for further study and provides insights into controlling nut's colour.


Asunto(s)
Juglans , Nueces , Nueces/química , Transcriptoma , Juglans/genética , Frutas , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
4.
Small ; 20(5): e2305762, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759422

RESUMEN

In the search for sustainable cathode materials for aqueous zinc ion batteries (AZIBs), vanadium (V)-based materials have garnered interest, primarily due to their abundance and multiple oxidation states. Among the contenders, Li3 VO4 (LiVO) stands out for its affordability, high specific capacity, and elevated ionic conductivity. However, its limited electrical conductivity results in significant resistance polarization, limiting its rate capability, especially under high currents. Through density functional theory (DFT) calculations, this study evaluates the electrochemical implications of carbon (C) incorporation within the LiVO matrix. The findings indicate that C integration significantly ameliorates the conductivity of LiVO. Moreover, C serves as a barrier, mitigating direct interactions between Zn2+ and LiVO, which in turn expedites Zn2+ diffusion. When considering various C materials for this role, glucose is emerged as the optimal candidate. The LiVO/C-glucose composite (LiVO/C-G) is observed to undergo dual phase transitions during charge-discharge cycles, resulting in an amorphous vanadium-oxygen (VO) derivative, paving the way for subsequent electrochemical reactions. Collectively, the insights pave a promising avenue for refining AZIB cathode design and performance.

5.
Plant Physiol ; 193(2): 1313-1329, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37403190

RESUMEN

Subgenome expression dominance plays a crucial role in the environmental adaptation of polyploids. However, the epigenetic molecular mechanism underlying this process has not been thoroughly investigated, particularly in perennial woody plants. Persian walnut (Juglans regia) and its wild relative, Manchurian walnut (Juglans mandshurica), are woody plants of great economic importance and are both paleopolyploids that have undergone whole-genome duplication events. In this study, we explored the characteristics of subgenome expression dominance in these 2 Juglans species and examined its epigenetic basis. We divided their genomes into dominant subgenome (DS) and submissive subgenome (SS) and found that the DS-specific genes might play critical roles in biotic stress response or pathogen defense. We comprehensively elucidated the characteristics of biased gene expression, asymmetric DNA methylation, transposable elements (TEs), and alternative splicing (AS) events of homoeologous gene pairs between subgenomes. The results showed that biased expression genes (BEGs) in 2 Juglans species were mainly related to external stimuli response, while non-BEGs were related to complexes that might be involved in signal transduction. DS genes had higher expression and more AS events while having less DNA methylation and TEs than homoeologous genes from the SS in the 2 Juglans species. Further studies showed that DNA methylation might contribute to the biased expression of gene pairs by modifying LTR/TIR/nonTIR TEs and improving the AS efficiency of corresponding precursor mRNAs in a particular context. Our study contributes to understanding the epigenetic basis of subgenome expression dominance and the environmental adaptation of perennial woody plants.


Asunto(s)
Metilación de ADN , Juglans , Metilación de ADN/genética , Genoma de Planta/genética , Juglans/genética , Regulación de la Expresión Génica de las Plantas , Epigénesis Genética
6.
BMC Plant Biol ; 23(1): 80, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36740678

RESUMEN

BACKGROUND: Late Embryogenesis Abundant (LEA) proteins are a class of proteins associated with plant stress resistance. Two Juglans species, Juglans regia and J. mandshurica, are both diploid (2n = 32), monoecious perennial economic tree species with high edible, pharmaceutical, and timber value. The identification, characterization, and expression patterns of LEA proteins in J. regia and its wild relative, J. mandshurica, would not only provide the genetic basis of this gene family, but it would also supply clues for further studies of the evolution and regulating mechanisms of LEA proteins in other tree species. RESULTS: In this study, we identified 25 and 20 members of the LEA gene family in Juglans regia and its wild relative, Juglans mandshurica, respectively. The results of phylogenetic analysis showed that the LEA members were divided into eight main subgroups. Predictions of their physicochemical properties showed the variable characteristics of LEA proteins, and the subcellular localization analysis indicated that most LEA proteins are localized in the nucleus. Chromosomal localization analysis and gene replication pattern prediction indicated that WGD is the predominant duplication mode of LEA genes. The results of the comparative analysis indicated a high level of collinearity between the two Juglans species. Analysis of cis-acting elements indicated that LEA genes had a relatively wide range of responses to abiotic stresses and phytohormonal processes, particularly in two phytohormones, methyl jasmonate and abscisic acid. Transcriptome profiling and qRT-PCR experiments showed that JrLEAs are commonly expressed in leaves, green husks, and male and female flowers, and most JmLEAs are more highly expressed in male flowers. We also hypothesized that JrLEAs are involved in the process of anthracnose resistance. Anthracnose-resistant varieties of JrLEAs presented relatively high expression levels at later stages. CONCLUSION: In this study, we provide a theoretical basis for the functional study of LEA genes in J. regia and J. mandshurica. Analysis of cis-acting elements and gene expression indicated that JrLEAs and JmLEAs play important roles in resistance to biotic stresses in these species.


Asunto(s)
Juglans , Juglans/genética , Juglans/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
7.
Small ; 19(50): e2304668, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37626454

RESUMEN

The inherent slow diffusion dynamics of aqueous zinc-ion batteries (AZIBs) act as a significant hindrance to their universal utilization as energy storage systems, largely attributed to the scarcity of superior cathode materials. In this study, a novel method that amalgamates oxygen defect engineering and polymer intercalation, guided by theoretical computations, to confront this challenge, is introduced. This approach begins with density functional theory calculations, demonstrating that the shielding effect rendered by polypyrrole (PPy) between NH4 V3 O8 (NVO) layers, along with the cooperative influence of oxygen defects (Od ), optimizes the kinetic transport of Zn2+ . Leveraging these theoretical outcomes, a two-step hydrothermal synthesis procedure is devised to fabricate PPy-intercalated NVO embedded with Od (NVO-Od @PPy). The empirical findings corroborate the theoretical predictions, showcasing that the NVO-Od @PPy//Zn system manifests exceptional cycling stability. Specifically, the NVO-Od @PPy electrode delivers an optimal reversible capacity, yielding 421 mAh g-1 at a current density of 0.1 A g-1 . Remarkably, even at an elevated current density of 10 A g-1 , it sustains a capacity of 175.7 mAh g-1 , while maintaining a capacity retention of 99% over 1000 cycles. This research provides pivotal insights for the engineering of high-performing cathode materials for AZIBs, paving the way for their future advancements.

8.
Mol Phylogenet Evol ; 188: 107912, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37648181

RESUMEN

Gene tree discordance is a significant legacy of biological evolution. Multiple factors can result in incongruence among genes, such as introgression, incomplete lineage sorting (ILS), gene duplication or loss. Resolving the background of gene tree discordance is a critical way to uncover the process of species diversification. Camellia, the largest genus in Theaceae, has controversial taxonomy and systematics due in part to a complex evolutionary history. We used 60 transcriptomes of 55 species, which represented 15 sections of Camellia to investigate its phylogeny and the possible causes of gene tree discordance. We conducted gene tree discordance analysis based on 1,617 orthologous low-copy nuclear genes, primarily using coalescent species trees and polytomy tests to distinguish hard and soft conflict. A selective pressure analysis was also performed to assess the impact of selection on phylogenetic topology reconstruction. Our results detected different levels of gene tree discordance in the backbone of Camellia, and recovered rapid diversification as one of the possible causes of gene tree discordance. Furthermore, we confirmed that none of the currently proposed sections of Camellia was monophyletic. Comparisons among datasets partitioned under different selective pressure regimes showed that integrating all orthologous genes provided the best phylogenetic resolution of the species tree of Camellia. The findings of this study reveal rapid diversification as a major source of gene tree discordance in Camellia and will facilitate future investigation of reticulate relationships at the species level in this important plant genus.


Asunto(s)
Camellia , Theaceae , Camellia/genética , Filogenia , Evolución Biológica , Duplicación de Gen
9.
Curr Issues Mol Biol ; 45(1): 311-326, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36661508

RESUMEN

(1) Background: C. vietnamensis is very suitable for growth in the low hilly areas of southern subtropical regions. Under appropriate conditions, the oil yield of C. vietnamensis can reach 1125 kg/ha (the existing varieties can reach 750 kg/ha). Moreover, the fruit of C. vietnamensis is large and the pericarp is thick (>5 cm). Therefore, a high seed ratio has become the main target economic trait for the breeding of C. vietnamensis. (2) Methods: A half-sibling population of C. vietnamensis plants with a combination of high and low seed ratios was constructed by crossing a C. vietnamensis female parent. Bulked segregant RNA analysis and full-length transcriptome sequencing were performed to determine the molecular mechanisms underlying a high seed ratio. (3) Results: Seed ratio is a complex quantitative trait with a normal distribution, which is significantly associated with four other traits of fruit (seed weight, seed number, fruit diameter, and pericarp thickness). Two candidate regions related to high seed ratio (HSR) were predicted. One spanned 140.8−148.4 Mb of chromosome 2 and was associated with 97 seed-yield-related candidate genes ranging in length from 278 to 16,628 bp. The other spanned 35.3−37.3 Mb on chromosome 15 and was associated with 38 genes ranging in length from 221 to 16,928 bp. Using the full-length transcript as a template, a total of 115 candidate transcripts were obtained, and 78 transcripts were predicted to be functionally annotated. The DEGs from two set pairs of cDNA sequencing bulks were enriched to cytochrome p450 CYP76F14 (KOG0156; GO:0055114, HSR4, HSR7), the gibberellin phytohormone pathway (GO:0016787, HSR5), the calcium signaling pathway (GO:0005509, HSR6), the polyubiquitin-PPAR signaling pathway (GO:0005515, HSR2, HSR3), and several main transcription factors (bZIP transcription factor, HSR1) in C. vietnamensis.

10.
BMC Plant Biol ; 22(1): 436, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36096735

RESUMEN

BACKGROUND: Understanding the underlying genetic mechanisms that drive phenotypic variations is essential for enhancing the efficacy of crop improvement. Persian walnut (Juglans regia L.), which is grown extensively worldwide, is an important economic tree fruit due to its horticultural, medicinal, and material value. The quality of the walnut fruit is related to the selection of traits such as thinner shells, larger filling rates, and better taste, which is very important for breeding in China. The complex quantitative fruit-related traits are influenced by a variety of physiological and environmental factors, which can vary widely between walnut genotypes. RESULTS: For this study, a set of 101 Persian walnut accessions were re-sequenced, which generated a total of 906.2 Gb of Illumina sequence data with an average read depth of 13.8× for each accession. We performed the genome-wide association study (GWAS) using 10.9 Mb of high-quality single-nucleotide polymorphisms (SNPs) and 10 agronomic traits to explore the underlying genetic basis of the walnut fruit. Several candidate genes are proposed to be involved in walnut characteristics, including JrPXC1, JrWAKL8, JrGAMYB, and JrFRK1. Specifically, the JrPXC1 gene was confirmed to participate in the regulation of secondary wall cellulose thickening in the walnut shell. CONCLUSION: In addition to providing considerable available genetic resources for walnut trees, this study revealed the underlying genetic basis involved in important walnut agronomic traits, particularly shell thickness, as well as providing clues for the improvement of genetic breeding and domestication in other perennial economic crops.


Asunto(s)
Juglans , Estudio de Asociación del Genoma Completo , Genotipo , Juglans/genética , Fenotipo , Fitomejoramiento
11.
J Environ Manage ; 277: 111429, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069148

RESUMEN

Understanding the roles and regional differences associated with cleaner production (CP) and end-of-pipe treatment (ET) can provide valuable information for the reduction of pollutant emissions. Considering the differences of these impact pathways, this paper proposes a two-stage decomposition method for investigating the contributions of CP and ET to the reduction of pollutant emissions. This two-stage method enhances the accuracy and obtainable detail of the decomposition results. Then, empirical research was conducted by decomposing the changes of China's industrial sulfur dioxide (SO2) emissions during 2005-2015. At the national level, CP and ET both decreased Chinese SO2 emissions, and CP has become the dominant approach for SO2 emission reduction in 2010-2015. Moreover, coal pollution intensity and treatment strength are key factors that need to be improved in CP and ET, respectively. At the provincial level, CP exerts a stronger impact on SO2 emission differences among different regions, while ET exerts less impact on SO2 emission differences among different regions. Based on the decomposition results, this paper presents targeted policy implications.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , China , Contaminación Ambiental , Industrias , Dióxido de Azufre/análisis
12.
BMC Plant Biol ; 20(1): 526, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203402

RESUMEN

BACKGROUND: Ulmus lamellosa (one of the ancient species of Ulmus) is an endemic and endangered plant that has undergone climatic oscillations and geographical changes. The elucidation of its demographic history and genetic differentiation is critical for understanding the evolutionary process and ecological adaption to forests in Northern China. RESULTS: Polymorphic haplotypes were detected in most populations of U. lamellosa via DNA sequencing. All haplotypes were divided into three phylogeographic clades fundamentally corresponding to their geographical distribution, namely THM (Taihang Mountains), YM (Yinshan Mountains), and YSM (Yanshan Mountains) groups. The YSM group, which is regarded as ancestral, possessed higher genetic diversity and significant genetic variability in contrast to the YSM and YM groups. Meanwhile, the divergence time of intraspecies haplotypes occurred during the Miocene-Pliocene, which was associated with major Tertiary geological and/or climatic events. Different degrees of gene exchanges were identified between the three groups. During glaciation, the YSM and THM regions might have served as refugia for U. lamellosa. Based on ITS data, range expansion was not expected through evolutionary processes, except for the THM group. A series of mountain uplifts (e.g., Yanshan Mountains and Taihang Mountains) following the Miocene-Pliocene, and subsequently quaternary climatic oscillations in Northern China, further promoted divergence between U. lamellosa populations. CONCLUSIONS: Geographical topology and climate change in Northern China played a critical role in establishing the current phylogeographic structural patterns of U. lamellosa. These results provide important data and clues that facilitate the demographic study of tree species in Northern China.


Asunto(s)
Genética de Población , Ulmus/genética , Teorema de Bayes , Evolución Biológica , China , Especies en Peligro de Extinción , Flujo Génico , Flujo Genético , Geografía , Haplotipos , Filogeografía , Análisis de Secuencia de ADN , Árboles
13.
Cell Biol Int ; 44(5): 1103-1111, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31930637

RESUMEN

Dysregulation of genes involved in alternative splicing contributes to hepatocarcinogenesis. SNRPB, a component of spliceosome, is implicated in human cancers, yet its clinical significance and biological function in hepatocellular carcinoma (HCC) remains unknown. Here, we show that SNRPB expression is increased in HCC tissues, compared with the nontumorous tissues, at both messenger RNA and protein levels in two independent cohorts. High expression of SNRPB is significantly associated with higher pathological grade, vascular invasion, serum alpha-fetoprotein level, tumor metastasis, and poor disease-free and overall survivals. Luciferase reporter and chromatin immunoprecipitation assays demonstrate that SNRPB upregulation in HCC is mediated by c-Myc. Positive correlation is found between SNRPB and c-Myc expression in clinical samples. In vitro studies show that ectopic expression of SNRPB promotes HCC cell proliferation and migration, whereas knockdown of SNRPB results in the opposite phenotypes. Collectively, our data suggest SNRPB function as an oncogene and serve as a potential prognostic factor in HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares snRNP/metabolismo , Biomarcadores de Tumor/metabolismo , Movimiento Celular , Proliferación Celular , Estudios de Cohortes , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo
14.
Sci Data ; 11(1): 269, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443357

RESUMEN

Platycarya strobilacea belongs to the walnut family (Juglandaceae), is commonly known as species endemic to East Asia, and is an ecologically important, wind pollinated, woody deciduous tree. To facilitate this ancient tree for the ecological value and conservation of this ancient tree, we report a new high-quality genome assembly of P. strobilacea. The genome size was 677.30 Mb, with a scaffold N50 size of 45,791,698 bp, and 98.43% of the assembly was anchored to 15 chromosomes. We annotated 32,246 protein-coding genes in the genome, of which 96.30% were functionally annotated in six databases. This new high-quality assembly of P. strobilacea provide valuable resource for the phylogenetic and evolutionary analysis of the walnut family and angiosperm.


Asunto(s)
Bases de Datos Genéticas , Genoma de Planta , Juglandaceae , Asia Oriental , Evolución Biológica , Cromosomas , Juglandaceae/genética , Filogenia
15.
Plants (Basel) ; 13(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38794406

RESUMEN

Disentangling how climate oscillations and geographical events significantly influence plants' genetic architecture and demographic history is a central topic in phytogeography. The deciduous ancient tree species Ulmus macrocarpa is primarily distributed throughout Northern China and has timber and horticultural value. In the current study, we studied the phylogenic architecture and demographical history of U. macrocarpa using chloroplast DNA with ecological niche modeling. The results indicated that the populations' genetic differentiation coefficient (NST) value was significantly greater than the haplotype frequency (GST) (p < 0.05), suggesting that U. macrocarpa had a clear phylogeographical structure. Phylogenetic inference showed that the putative chloroplast haplotypes could be divided into three groups, in which the group Ⅰ was considered to be ancestral. Despite significant genetic differentiation among these groups, gene flow was detected. The common ancestor of all haplotypes was inferred to originate in the middle-late Miocene, followed by the haplotype overwhelming diversification that occurred in the Quaternary. Combined with demography pattern and ecological niche modeling, we speculated that the surrounding areas of Shanxi and Inner Mongolia were potential refugia for U. macrocarpa during the glacial period in Northern China. Our results illuminated the demography pattern of U. macrocarpa and provided clues and references for further population genetics investigations of precious tree species distributed in Northern China.

16.
J Tradit Chin Med ; 33(6): 757-60, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24660607

RESUMEN

OBJECTIVE: To observe capillary blood flow at acupoints during acupuncture treatment of primary dysmenorrhea and gain new insights into its analgesic mechanism. METHODS: Patients with primary dysmenorrhea were enrolled and randomly assigned to a treatment or control group. Subjects' symptoms were differentiated into various Traditional Chinese Medicine (TCM) syndromes and treated for 10 sessions with puncturing acupuncture or self-pressing right-hand Hegu (LI 4), adding other acupoints based on syndrome. Laser speckle was used to compare the change in the vasomotor amplitude and perfusion of the capillaries in Hegu (LI 4) before and during the treatment. Each subject was required to finish the period pain symptoms observation form, verbal rating scales, numerical rating scale, pain rating index, face rating scale, Zung self-rating depression scale, Zung self-rating anxiety scale, and numerical rating scale before and after treatments. RESULTS: After 10 sessions, the symptom scores, pain index (PI), and visual analog scale (VAS) decreased significantly in treatment group. The volume of blood flow in Hegu (LI 4) declined slightly. No significant evidence supported that needling caused capillary contraction, but the capillary vasomotor amplitude at Hegu (LI 4) increased remarkably. CONCLUSION: Acupuncture can increase the capillary blood flow, thus promoting the flow of Qi and blood in terms ofTCM theory, which facilitates pain relief.


Asunto(s)
Terapia por Acupuntura , Dismenorrea/terapia , Microcirculación , Puntos de Acupuntura , Adulto , Dismenorrea/fisiopatología , Femenino , Humanos , Microvasos/fisiopatología , Manejo del Dolor , Resultado del Tratamiento , Adulto Joven
17.
J Cancer Res Clin Oncol ; 149(20): 18119-18134, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38007403

RESUMEN

BACKGROUND: Pancreatic adenocarcinoma (PAAD) constitutes a lethal malignancy, notorious for its elevated mortality rates due to the difficulties in early diagnosis and rapid metastasis. The emerging paradigm of ferroptosis-an iron-catalyzed, regulated cell death distinguished by the accrual of lipid peroxides-has recently garnered scholarly focus. However, the expression landscape of ferroptosis-related genes (FRGs) in PAAD and their prognostic implications remain enigmatic. METHODS: We undertook a rigorous quantification of FRGs in PAAD samples, sourcing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. These repositories also provided extensive metadata, encompassing mesenchymal stemness index (mRNAsi), genomic mutations, copy number variations (CNV), tumor mutational burden (TMB), and other clinical attributes. A predictive model was constructed utilizing Lasso regression analysis, and a co-expression study was executed to elucidate the complex interconnections between FRGs and other gene sets. RESULTS: Intriguingly, FRGs were substantially upregulated in the high-risk cohort, even in the absence of clinically manifest symptoms, emphasizing their utility as prognostic biomarkers. Gene set enrichment analysis (GSEA) revealed significant enrichment of immune and tumor-related pathways in this high-risk demographic. Striking heterogeneities in immune function and N6-methyladenosine (m6A) RNA modification were observed between the low- and high-risk groups. Our analysis further implicated a cohort of genes-including LINC01559, C11orf86, SERPINB5, DSG3, MSLN, EREG, FAM83A, CXCL5, LY6D, and PSCA-as cardinal mediators in PAAD pathogenesis. A convergence of our predictive model with an analysis of CNVs, single nucleotide polymorphisms (SNPs), and drug sensitivities, revealed an intricate relationship with the FRGs. CONCLUSIONS: Our findings accentuate the salient role of FRGs as critical modulators in the pathogenesis and progression of PAAD. Importantly, our composite prognostic framework offers invaluable insights into PAAD clinical trajectory. Moreover, the complex crosstalk between FRGs and immune cell landscapes in the tumor microenvironment (TME) may elucidate prospective therapeutic strategies. The clinical translational utility of these insights, however, requires further in-depth empirical exploration. Accordingly, the FRG signature introduces a compelling new avenue for risk stratification and targeted therapeutic interventions in this devastating malignancy.


Asunto(s)
Adenocarcinoma , Ferroptosis , Neoplasias Pancreáticas , Humanos , Pronóstico , Neoplasias Pancreáticas/genética , Ferroptosis/genética , Variaciones en el Número de Copia de ADN , Biomarcadores , Microambiente Tumoral , Proteínas de Neoplasias
18.
Int J Biol Macromol ; 246: 125643, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37394216

RESUMEN

Oil-tea camellia fruit shell (CFS) is a very abundant waste lignocellulosic resource. The current treatments of CFS, i.e. composting and burning, pose a severe threat on environment. Up to 50 % of the dry mass of CFS is composed of hemicelluloses. However, chemical structures of the hemicelluloses in CFS have not been extensively studied, which limits their high-value utilization. In this study, different types of hemicelluloses were isolated from CFS through alkali fractionation with the assistance of Ba(OH)2 and H3BO3. Xylan, galacto-glucomannan and xyloglucan were found to be the major hemicelluloses in CFS. Through methylation, HSQC and HMBC analyses, we have found that the xylan in CFS is composed of →4)-ß-D-Xylp-(1→ and →3,4)-ß-D-Xylp-(1→ linked by (1→4)-ß glycosidic bond as the main chain; the side chains are α-L-Fucp-(1→, →5)-α-L-Araf-(1→, ß-D-Xylp-(1→, α-L-Rhap-(1→ and 4-O-Me-α-D-GlcpA-(1→, connected to the main chain through (1→3) glycosidic bond. The main chain of galacto-glucomannan in CFS consists of →6)-ß-D-Glcp-(1→, →4)-ß-D-Glcp-(1→, →4,6)-ß-D-Glcp-(1→ and →4)-ß-D-Manp-(1→; the side chains are ß-D-Glcp-(1→, →2)-ß-D-Galp-(1→, ß-D-Manp-(1→ and →6)-ß-D-Galp-(1→ connected to the main chain through (1→6) glycosidic bonds. Moreover, galactose residues are connected by α-L-Fucp-(1→. The main chain of xyloglucan is composed of →4)-ß-D-Glcp-(1→, →4,6)-ß-D-Glcp-(1→ and →6)-ß-D-Glcp-(1→; the side groups, i.e. ß-D-Xylp-(1→ and →4)-ß-D-Xylp-(1→, are connected to the main chain by (1→6) glycosidic bond; →2)-ß-D-Galp-(1→ and α-L-Fucp-(1→ can also connect to →4)-ß-D-Xylp-(1→ forming di- or trisaccharide side chains.


Asunto(s)
Camellia , Xilanos , Frutas , Secuencia de Carbohidratos , Polisacáridos/química , Glicósidos ,
19.
Plants (Basel) ; 12(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37653873

RESUMEN

Opisthopappus is a perennial, endemic herb of the Taihang Mountains in China. Two species of this genus (O. longilobus and O. taihangensis) are important wild genetic resources for Asteraceae; however, their reproductive biology has been lacking until now. This study is the first detailed report on the reproductive biology and breeding systems of two Opisthopappus species. Through field observations, the floral syndromes of O. longilobus and O. taihangensis were found to possess a similar pattern, although O. taihangensis has a relatively larger capitulum, more ray ligules, and disc florets. The flowers of both O. longilobus and O. taihangensis are protandrous, a character that can prevent autogamy at the single-flower level, and insects are required for pollination. Further, brightly ligules, brightly bisexual florets, unique fragrance, and amount of nectar suggest that these species propagate via an entomophilous pollination system. Hymenopteran and Diptera species were observed as the effective pollinators for these two species. The outcrossing index, pollen/ovule ratio and the results of hand pollination indicated that these Opisthopappus species might have a mixed mating system that combines cross-fertilization and partial self-fertilization for O. longilobus and O. taihangensis, outcrossing predominated in the breeding system, while self-pollination played an important role in seed production when insect pollination was unavailable, particularly in a harsh environment, such as the Taihang Mountains cliffs. Meanwhile, O. taihangensis might better adapt to severe surroundings with relatively complex floral syndromes, specifically through the attraction of visiting insects and a high seed set rate. The above results not only provide reference information toward a better understanding of the survival strategies of O. longilobus and O. taihangensis in the Taihang Mountains but also lay a solid foundation for further exploring the molecular mechanisms that underly their adaptation under cliff environments.

20.
Hortic Res ; 10(3): uhad015, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36968185

RESUMEN

Walnut (Juglans) species are used as nut crops worldwide. Eastern black walnut (EBW, Juglans nigra), a diploid, horticultural important woody species is native to much of eastern North America. Although it is highly valued for its wood and nut, there are few resources for understanding EBW genetics. Here, we present a high-quality genome assembly of J. nigra based on Illumina, Pacbio, and Hi-C technologies. The genome size was 540.8 Mb, with a scaffold N50 size of 35.1 Mb, and 99.0% of the assembly was anchored to 16 chromosomes. Using this genome as a reference, the resequencing of 74 accessions revealed the effective population size of J. nigra declined during the glacial maximum. A single whole-genome duplication event was identified in the J. nigra genome. Large syntenic blocks among J. nigra, Juglans regia, and Juglans microcarpa predominated, but inversions of more than 600 kb were identified. By comparing the EBW genome with those of J. regia and J. microcarpa, we detected InDel sizes of 34.9 Mb in J. regia and 18.3 Mb in J. microcarpa, respectively. Transcriptomic analysis of differentially expressed genes identified five presumed NBS-LRR (NUCLEOTIDE BINDING SITE-LEUCINE-RICH REPEAT) genes were upregulated during the development of walnut husks and shells compared to developing embryos. We also identified candidate genes with essential roles in seed oil synthesis, including FAD (FATTY ACID DESATURASE) and OLE (OLEOSIN). Our work advances the understanding of fatty acid bioaccumulation and disease resistance in nut crops, and also provides an essential resource for conducting genomics-enabled breeding in walnut.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA