Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 653
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(25): e2400546121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857407

RESUMEN

Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.

2.
Eur J Immunol ; : e2350823, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38922875

RESUMEN

Osteoclast-mediated bone erosion and deformation represent significant pathological features in rheumatoid arthritis (RA). Myeloid-derived suppressor cells (MDSCs) and B cells have emerged as key contributors to the progression of RA. Nevertheless, their involvement, especially the interaction in RA osteoclastogenesis remains elusive. In this study, our results revealed a marked expansion of MDSCs in RA patients, and importantly, their abundance was positively correlated with radiographic damage evaluated by the Sharp/van der Heijde score. Notably, MDSCs derived from both RA patients and arthritic mice exhibited a heightened propensity to differentiate into osteoclasts compared with those from healthy individuals. Intriguingly, we observed that B cells from RA patients could augment the osteoclastogenic potential of MDSCs, which was also observed in arthritic mice. The impact of B cells on MDSC-mediated osteoclastogenesis was found to be most pronounced in switched memory B cells, followed by CD21low B cells and naïve B cells. MDSCs from B-cell-deficient mice exhibited diminished capacity to differentiate into osteoclasts, accompanied by distinct gene expression profiles associated with osteoclastogenesis. Taken together, our findings suggested that MDSCs were important osteoclast precursors primed by B cells in RA, serving as novel therapeutic targets for the persistent disease.

3.
Am J Pathol ; 194(6): 912-926, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38417695

RESUMEN

This study was designed to discern the effect of heavy scavenger metallothionein on glutathione (GSH) deprivation-evoked cardiac anomalies and mechanisms involved with an emphasis on ferroptosis. Wild-type and cardiac metallothionein transgenic mice received GSH synthase inhibitor buthionine sulfoximine (BSO; 30 mmol/L in drinking water) for 14 days before assessment of myocardial morphology and function. BSO evoked cardiac remodeling and contractile anomalies, including cardiac hypertrophy, interstitial fibrosis, enlarged left ventricular chambers, deranged ejection fraction, fraction shortening, cardiomyocyte contractile capacity, intracellular Ca2+ handling, sarcoplasmic reticulum Ca2+ reuptake, loss of mitochondrial integrity (mitochondrial swelling, loss of aconitase activity), mitochondrial energy deficit, carbonyl damage, lipid peroxidation, ferroptosis, and apoptosis. Metallothionein itself did not affect myocardial morphology and function, although it mitigated BSO-provoked myocardial anomalies, loss of mitochondrial integrity and energy, and ferroptosis. Immunoblotting revealed down-regulated sarco(endo)plasmic reticulum Ca2+-ATPase 2a, glutathione peroxidase 4, ferroptosis-suppressing CDGSH iron-sulfur domain 1 (CISD1), and mitochondrial regulating glycogen synthase kinase-3ß phosphorylation with elevated p53, myosin heavy chain-ß isozyme, IκB phosphorylation, and solute carrier family 7 member 11 (SLC7A11) as well as unchanged SLC39A1, SLC1A5, and ferroptosis-suppressing protein 1 following BSO challenge, all of which, except glutamine transporter SLC7A11 and p53, were abrogated by metallothionein. Inhibition of CISD1 using pioglitazone nullified GSH-offered benefit against BSO-induced cardiomyocyte ferroptosis and contractile and intracellular Ca2+ derangement. Taken together, these findings support a regulatory modality for CISD1 in the impedance of ferroptosis in metallothionein-offered protection against GSH depletion-evoked cardiac aberration.


Asunto(s)
Cardiomiopatías , Ferroptosis , Glutatión , Metalotioneína , Ratones Transgénicos , Animales , Ferroptosis/efectos de los fármacos , Metalotioneína/metabolismo , Ratones , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Glutatión/metabolismo , Estrés Oxidativo/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Masculino , Butionina Sulfoximina/farmacología
4.
EMBO Rep ; 24(3): e55762, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36597993

RESUMEN

N6 -Methyladenosine (m6 A) is an important RNA modification catalyzed by methyltransferase-like 3 (METTL3) and METTL14. m6 A homeostasis mediated by the methyltransferase (MTase) complex plays key roles in various biological processes. However, the mechanism underlying METTL14 protein stability and its role in m6 A homeostasis remain elusive. Here, we show that METTL14 stability is regulated by the competitive interaction of METTL3 with the E3 ligase STUB1. STUB1 directly interacts with METTL14 to mediate its ubiquitination at lysine residues K148, K156, and K162 for subsequent degradation, resulting in a significant decrease in total m6 A levels. The amino acid regions 450-454 and 464-480 of METTL3 are essential to promote METTL14 stabilization. Changes in STUB1 expression affect METTL14 protein levels, m6 A modification and tumorigenesis. Collectively, our findings uncover an ubiquitination mechanism controlling METTL14 protein levels to fine-tune m6 A homeostasis. Finally, we present evidence that modulating STUB1 expression to degrade METTL14 could represent a promising therapeutic strategy against cancer.


Asunto(s)
Adenosina , Metiltransferasas , Adenosina/metabolismo , Metiltransferasas/genética , Homeostasis
5.
J Proteome Res ; 23(2): 728-737, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38156953

RESUMEN

Tumor-associated autoantibodies (TAAbs) have demonstrated potential as biomarkers for cancer detection. However, the understanding of their role in hepatocellular carcinoma (HCC) remains limited. In this study, we aimed to systematically collect and standardize information about these TAAbs and establish a comprehensive database as a platform for in-depth research. A total of 170 TAAbs were identified from published papers retrieved from PubMed, Web of Science, and Embase. Following normative reannotation, these TAAbs were referred to as 162 official symbols. The hccTAAb (tumor-associated autoantibodies in hepatocellular carcinoma) atlas was developed using the R Shiny framework and incorporating literature-based and multiomics data sets. This comprehensive online resource provides key information such as sensitivity, specificity, and additional details such as official symbols, official full names, UniProt, NCBI, HPA, neXtProt, and aliases through hyperlinks. Additionally, hccTAAb offers six analytical modules for visualizing expression profiles, survival analysis, immune infiltration, similarity analysis, DNA methylation, and DNA mutation analysis. Overall, the hccTAAb Atlas provides valuable insights into the mechanisms underlying TAAb and has the potential to enhance the diagnosis and treatment of HCC using autoantibodies. The hccTAAb Atlas is freely accessible at https://nscc.v.zzu.edu.cn/hccTAAb/.


Asunto(s)
Ascomicetos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Autoanticuerpos , Metilación de ADN , Biomarcadores de Tumor
6.
Cancer Sci ; 115(1): 70-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964506

RESUMEN

To evaluate the potential of zinc finger protein 1 (ZPR1) as a diagnostic biomarker and explore the underlying role for esophageal squamous cell carcinoma (ESCC). A human proteome microarray was customized to identify anti-ZPR1 autoantibody, and enzyme-linked immunosorbent assay (ELISA) was adopted to assess the diagnostic performance of anti-ZPR1 autoantibody in 294 patients with ESCC and 294 normal controls. The expression of ZPR1 protein was measured by immunohistochemistry. The effect of ZPR1 on the proliferation, migration, and invasion of ESCC cells was investigated through CCK-8, wound healing, and Transwell assays. The expression level of anti-ZPR1 autoantibody (fold change = 2.77) in ESCC patients was higher than that in normal controls. The receiver operating characteristic (ROC) analysis manifested anti-ZPR1 autoantibody achieved area under the ROC curve (AUC) of 0.726 and 0.734 to distinguish ESCC from normal controls with sensitivity of 50.0% and 42.3%, and specificity of 91.0% and 92.0% in the test group and validation group, respectively. The positive rate of ZPR1 protein was significantly higher in ESCC tissues (75.5%, 80/106) than paracancerous tissues (9.4%, 5/53). Compared with the human normal esophageal cell line, the expression level of ZPR1 mRNA and protein in ESCC lines (KYSE150, Eca109, and TE1) had an increased trend. The knockdown or overexpression of ZPR1 reduced and enhanced the proliferation, migration, and invasion of ESCC cell, respectively. ZPR1 was a potential immunodiagnostic biomarker for noninvasive detection and could be a promotional factor in tumor progression of ESCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas/patología , Biomarcadores , Autoanticuerpos/metabolismo , Línea Celular Tumoral , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
7.
Small ; 20(10): e2306095, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37903361

RESUMEN

Seasonal influenza still greatly threatens public health worldwide, leading to significant morbidity and mortality. Antiviral medications for influenza treatment are limited and accompanied by increased drug resistance. In severe influenza virus infection, hyperinflammation and hypoxia may be the significant threats associated with mortality, so the development of effective therapeutic methods to alleviate excessive inflammation while reducing viral damage is highly pursued. Here, a multifunctional MOF-based nanohybrid of Cu─TCPP@Mn3 O4 as a novel drug against influenza A virus infection (MOF = metal-organic framework; TCPP = tetrakis (4-carboxyphenyl) porphyrin) is designed. Cu─TCPP@Mn3 O4 exhibits potent inhibitory capability against influenza A virus infection in vitro and in vivo. The mechanism study reveals that Cu─TCPP@Mn3 O4 inhibits the virus entry by binding to the HA2 subunit of influenza A virus hemagglutinin. In addition, the nanoparticles of Mn3 O4 in Cu─TCPP@Mn3 O4 can scavenge intracellular ROS with O2 generation to downregulate inflammatory factors and effectively inhibit cytokines production. By reconstructing the antioxidant microenvironment, Cu─TCPP@Mn3 O4 features as a promising nanomedicine with anti-inflammatory and anti-viral synergistic effects.


Asunto(s)
Gripe Humana , Nanopartículas , Humanos , Especies Reactivas de Oxígeno , Inflamación/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico
8.
BMC Cancer ; 24(1): 598, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755535

RESUMEN

BACKGROUND: Results regarding whether it is essential to incorporate genetic variants into risk prediction models for esophageal cancer (EC) are inconsistent due to the different genetic backgrounds of the populations studied. We aimed to identify single-nucleotide polymorphisms (SNPs) associated with EC among the Chinese population and to evaluate the performance of genetic and non-genetic factors in a risk model for developing EC. METHODS: A meta-analysis was performed to systematically identify potential SNPs, which were further verified by a case-control study. Three risk models were developed: a genetic model with weighted genetic risk score (wGRS) based on promising SNPs, a non-genetic model with environmental risk factors, and a combined model including both genetic and non-genetic factors. The discrimination ability of the models was compared using the area under the receiver operating characteristic curve (AUC) and the net reclassification index (NRI). The Akaike information criterion (AIC) and Bayesian information criterion (BIC) were used to assess the goodness-of-fit of the models. RESULTS: Five promising SNPs were ultimately utilized to calculate the wGRS. Individuals in the highest quartile of the wGRS had a 4.93-fold (95% confidence interval [CI]: 2.59 to 9.38) increased risk of EC compared with those in the lowest quartile. The genetic or non-genetic model identified EC patients with AUCs ranging from 0.618 to 0.650. The combined model had an AUC of 0.707 (95% CI: 0.669 to 0.743) and was the best-fitting model (AIC = 750.55, BIC = 759.34). The NRI improved when the wGRS was added to the risk model with non-genetic factors only (NRI = 0.082, P = 0.037). CONCLUSIONS: Among the three risk models for EC, the combined model showed optimal predictive performance and can help to identify individuals at risk of EC for tailored preventive measures.


Asunto(s)
Pueblo Asiatico , Neoplasias Esofágicas , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/epidemiología , Factores de Riesgo , Estudios de Casos y Controles , China/epidemiología , Pueblo Asiatico/genética , Femenino , Masculino , Persona de Mediana Edad , Medición de Riesgo/métodos , Curva ROC , Interacción Gen-Ambiente , Pueblos del Este de Asia
9.
BMC Cancer ; 24(1): 283, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431566

RESUMEN

BACKGROUND: This study aims to investigate the expression of UBQLN1 in lung cancer (LC) tissue and the diagnostic capability of autoantibody to UBQLN1 (anti-UBQLN1) in the detection of LC and the discrimination of pulmonary nodules (PNs). METHODS: Sera from 798 participants were used to discover and validate the level of autoantibodies via HuProt microarray and Enzyme-linked immunosorbent assay (ELISA). Logistic regression analysis was applied to establish model. Receiver operating characteristic curve (ROC) analysis was performed to evaluate the diagnostic potential. Immunohistochemistry was performed to detect UBQLN1 expression in 88 LC tissues and 88 para-tumor tissues. qRT-PCR and western blotting were performed to detect the expression of UBQLN1 at the mRNA and protein levels, respectively. Trans-well assay and cell counting kit-8 (CCK-8) was used to investigate the function of UBQLN1. RESULTS: Anti-UBQLN1 was identified with the highest fold change by protein microarray. The level of anti-UBQLN1 in LC patients was obviously higher than that in NC or patients with benign lung disease of validation cohort 1 (P<0.05). The area under the curve (AUC) of anti-UBQLN1 was 0.610 (95%CI: 0.508-0.713) while reached at 0.822 (95%CI: 0.784-0.897) when combining anti-UBQLN1 with CEA, CYFRA21-1, CA125 and three CT indicators (vascular notch sign, lobulation sign and mediastinal lymph node enlargement) in the discrimination of PNs. UBQLN1 protein was overexpressed in lung adenocarcinoma (LUAD) tissues compared to para-tumor tissues. UBQLN1 knockdown remarkably inhibited the migration, invasion and proliferation of LUAD cell lines. CONCLUSIONS: Anti-UBQLN1 might be a potential biomarker for the diagnosis of LC and the discrimination of PNs.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Humanos , Neoplasias Pulmonares/diagnóstico , Inmunidad Humoral , Antígenos de Neoplasias , Queratina-19 , Biomarcadores de Tumor , Proteínas Relacionadas con la Autofagia/genética , Proteínas Adaptadoras Transductoras de Señales/genética
10.
Biotechnol Bioeng ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924076

RESUMEN

In this study, a novel array electrospinning collector was devised to generate two distinct regenerated silk fibroin (SF) fibrous membranes: ordered and disordered. Leveraging electrostatic forces during the electrospinning process allowed precise control over the orientation of SF fiber, resulting in the creation of membranes comprising both aligned and randomly arranged fiber layers. This innovative approach resulted in the development of large-area membranes featuring exceptional stability due to their alternating patterned structure, achievable through expansion using the collector, and improving the aligned fiber membrane mechanical properties. The study delved into exploring the potential of these membranes in augmenting wound healing efficiency. Conducting in vitro toxicity assays with adipose tissue-derived mesenchymal stem cells (AD-MSCs) and normal human dermal fibroblasts (NHDFs) confirmed the biocompatibility of the SF membranes. We use dual perspectives on exploring the effects of different conditioned mediums produced by cells and structural cues of materials on NHDFs migration. The nanofibers providing the microenvironment can directly guide NHDFs migration and also affect the AD-MSCs and NHDFs paracrine effects, which can improve the chemotaxis of NHDFs migration. The ordered membrane, in particular, exhibited pronounced effectiveness in guiding directional cell migration. This research underscores the revelation that customizable microenvironments facilitated by SF membranes optimize the paracrine products of mesenchymal stem cells and offer valuable physical cues, presenting novel prospects for enhancing wound healing efficiency.

11.
Eur J Nutr ; 63(3): 653-672, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38170272

RESUMEN

PURPOSE: The relationship between circulating 25-hydroxyvitamin D [25(OH)D] and pancreatic cancer has been well studied but remains unclear. The purpose of this study was to elucidate the association between circulating 25(OH)D and pancreatic cancer by using a meta-analytic approach. METHODS: PubMed, Embase, and Wed of Science databases were searched through October 15, 2022. A random or fixed-effects model was used to estimate the pooled odds ratio (OR), risk ratio (RR), hazard ratio (HR) and their 95% confidence intervals (CIs). RESULTS: A total of 16 studies including 529,917 participants met the inclusion criteria, of which 10 reported incidence and 6 reported mortality. For the highest versus lowest categories of circulating 25(OH)D, the pooled OR of pancreatic cancer incidence in case-control studies was 0.98 (95% CI 0.69-1.27), and the pooled HRs of pancreatic cancer mortality in cohort and case-control studies were 0.64 (95% CI 0.45-0.82) and 0.78 (95% CI 0.62-0.95), respectively. The leave-one-out sensitivity analyses found no outliers and Galbraith plots indicated no substantial heterogeneity. CONCLUSION: Evidence from this meta-analysis suggested that high circulating 25(OH)D levels may be associated with decreased mortality but not incidence of pancreatic cancer. Our findings may provide some clues for the treatment of pancreatic cancer and remind us to be cautious about widespread vitamin D supplementation for the prevention of pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Vitamina D/análogos & derivados , Humanos , Vitaminas , Calcifediol , Neoplasias Pancreáticas/epidemiología
12.
J Orthop Sci ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38565448

RESUMEN

BACKGROUND: This study aimed to determine risk factors for poor in-hospital outcomes in a large cohort of older adult patients with acute non-traffic traumatic spinal cord injury (tSCI). METHODS: This is a population-based, retrospective, observational study. Data of older adults ≥65 years with a primary discharge diagnosis of acute non-traffic tSCI were extracted from the US National Inpatient Sample (NIS) database 2005-2018. Traffic-related tSCI admissions or patients lacking complete data on age, sex and outcomes of interest were excluded. Univariate and multivariate logistic regression analysis was used to determine associations between variables and in-hospital outcomes. RESULTS: Data of 49,449 older patients (representing 246,939 persons in the US) were analyzed. The mean age was 79.9 years. Multivariable analyses revealed that severe International Classification of Disease (ICD)-based injury severity score (ICISS) (adjusted odds ratio [aOR] = 3.14, 95% confidence interval [CI]: 2.77-3.57), quadriplegia (aOR = 2.79, 95%CI: 2.34-3.32), paraplegia (aOR = 2.60, 95%CI:1.89-3.58), cervical injury with vertebral fracture (aOR = 2.19, 95%CI: 1.90-2.52), and severe liver disease (aOR = 2.33, 95%CI: 1.34-4.04) were all strong independent predictors of in-hospital mortality. In addition, malnutrition (aOR = 3.19, 95% CI: 2.93-3.48) was the strongest predictors of prolonged length of stay (LOS). CONCLUSIONS: Several critical factors for in-hospital mortality, unfavorable discharge, and prolonged LOS among US older adults with acute non-traffic tSCI were identified. In addition to the factors associated with initial severity, the presence of severe liver disease and malnutrition emerged as strong predictors of unfavorable outcomes, highlighting the need for special attention for these patient subgroups.

13.
Nano Lett ; 23(1): 267-275, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36580489

RESUMEN

Great efforts have been made to expand the application fields of nanozymes, which puts forward requirements for nanozymes with both superior catalytic activity and specificity. Herein, we reported the high-indexed intermetallic Pt3Sn (H-Pt3Sn) with high peroxidase-like activity and specificity. The resultant H-Pt3Sn exhibits a specific activity of 345.3 U/mg, which is 1.82 times higher than Pt. Moreover, H-Pt3Sn possesses negligible oxidase-like and catalase-like activities, achieving superior catalytic specificity toward H2O2 activation. Experimental and theoretical calculations reveal both the splitting energy for adsorbed H2O2 and the energy barrier for the rate-determining step of H-Pt3Sn are significantly decreased compared with Pt3Sn and Pt. Finally, a nanozyme-linked immunosorbent assay is successfully developed, achieving the sensitive and accurate colorimetric detection for carcinoembryonic antigen with a low detection limit of 0.49 pg/mL and showing practical feasibility in serum sample detection.


Asunto(s)
Peróxido de Hidrógeno , Peroxidasa , Peroxidasas , Inmunoensayo , Colorimetría
14.
Nano Lett ; 23(1): 107-115, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36541945

RESUMEN

In comparison to the well-developed proton-exchange-membrane fuel cells, anion-exchange-membrane fuel cells (AEMFCs) permit adoption of platinum-group-metal (PGM)-free catalysts due to the alkaline environment, giving a substantial cost reduction. However, previous AEMFCs have generally shown unsatisfactory performances due to the lack of effective PGM-free catalysts that can endure harsh fuel cell conditions. Here we report a plasma-assisted synthesis of high-quality nickel nitride (Ni3N) and zirconium nitride (ZrN) employing dinitrogen as the nitrogen resource, exhibiting exceptional catalytic performances toward hydrogen oxidation and oxygen reduction in an alkaline enviroment, respectively. A PGM-free AEMFC assembled by using Ni3N as the anode and ZrN as the cathode delivers power densities of 256 mW cm-2 under an H2-O2 condition and 151 mW cm-2 under an H2-air condition. Furthermore, the fuel cell shows no evidence of degradation after 25 h of operation. This work creates opportunities for developing high-performance and durable AEMFCs based on metal nitrides.


Asunto(s)
Níquel , Platino (Metal) , Membranas , Membrana Celular , Aniones , Protones
15.
J Fish Biol ; 104(5): 1566-1578, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38414201

RESUMEN

In this study, Micropterus salmoides were fed with dietary glutathione (GSH, 0, 100, 300, and 500 mg/kg) for 56 days to investigate its effects on growth performance, serum nonspecific immunity, liver antioxidant capacity, tissue morphology, and intestinal microbiota. The results showed that the survival rate, weight gain rate, and specific growth rate and condition factor increased, whereas the feed conversion ratio, hepato-somatic index, and viscerosomatic index decreased in the GSH groups. Compared with the control group, the serum total protein content significantly increased, whereas the triglyceride and total cholesterol significantly decreased in the 300-mg/kg dietary GSH group. The activities of lysozyme, alkaline phosphatase, and acid phosphatase were significantly higher in GSH-supplemented groups, peaking at 300-mg/kg GSH. GSH supplementation significantly increased total antioxidant capacity and decreased malondialdehyde content, with the most pronounced effects at 300-mg/kg GSH. Further antioxidant indicators showed that a dietary supplement of 300-mg/kg GSH significantly increased the activities of superoxide dismutase, glutathione transferase, endogenous glutathione, glutathione reductase, and catalase. At 300-mg/kg GSH, the liver exhibited improved characteristics with alleviated vacuolation and hepatocyte nuclear shift, and intestine showed enhanced structure with increased villus height and intestinal wall thickness. Additionally, a 300-mg/kg GSH supplementation improved the diversity of intestinal microbiota, increased the abundance of probiotics such as Bacillus, and inhibited the development of pathogenic bacteria such as Plesiomonas. Overall, the results suggest that the effect of GSH addition on improving growth performance, nonspecific immunity, antioxidant capacity, and intestinal microbiota of M. salmoides is best in the 300-mg/kg addition group. Based on second-degree polynomial regression analysis of weight gain, the optimum requirement of dietary GSH in M. salmoides is a 336.84-mg/kg diet.


Asunto(s)
Alimentación Animal , Antioxidantes , Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Glutatión , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Antioxidantes/metabolismo , Glutatión/metabolismo , Alimentación Animal/análisis , Dieta/veterinaria , Hígado , Inmunidad Innata/efectos de los fármacos
16.
Angew Chem Int Ed Engl ; : e202407613, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38736299

RESUMEN

Anion-exchange membrane fuel cells provide the possibility to use platinum group metal-free catalysts, but the anodic hydrogen oxidation reaction (HOR) suffers from sluggish kinetics and its source is still debated. Here, over nickel-tungsten (Ni-W) alloy catalysts, we show that the Ni : W ratio greatly governs the HOR performance in alkaline electrolyte. Experimental and theoretical studies unravel that alloying with W can tune the unpaired electrons in Ni, tailoring the potential of zero charge and the catalytic surface to favor hydroxyl adsorption (OHad). The OHad species coordinately interact with potassium (K+) ions, which break the K+ solvation sheath to leave free water molecules, yielding an improved connectivity of hydrogen-bond networks. Consequently, the optimal Ni17W3 alloy exhibits alkaline HOR activity superior to the state-of-the-art platinum on carbon (Pt/C) catalyst and operates steadily with negligible decay after 10,000 cycles. Our findings offer new understandings of alloyed HOR catalysts and will guide rational design of next-generation catalysts for fuel cells.

17.
J Am Chem Soc ; 145(31): 17485-17494, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37526148

RESUMEN

Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammonia (NH3). Here we demonstrate remarkable NH3 resistivity over a nickel-molybdenum alloy (MoNi4) modulated by chromium (Cr) dopants. The resultant Cr-MoNi4 exhibits high activity toward alkaline hydrogen oxidation and can undergo 10,000 cycles without apparent activity decay in the presence of 2 ppm of NH3. Furthermore, a fuel cell assembled with this catalyst retains 95% of the initial peak power density even when NH3 (10 ppm)/H2 was fed, whereas the power output reduces to 61% of the initial value for the Pt/C catalyst. Experimental and theoretical studies reveal that the Cr modifier not only creates electron-rich states that restrain lone-pair electron donation but also downshifts the d-band center to suppress d-electron back-donation, synergistically weakening NH3 adsorption.

18.
Clin Immunol ; 246: 109206, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528251

RESUMEN

This study aims to discover novel autoantibodies against tumor-associated antigens (TAAs) and establish diagnostic models for assisting in the diagnosis of lung cancer and discrimination of pulmonary nodules (PNs). Ten autoantibodies to TAAbs (TAAbs) were discovered by means of protein microarray and their serum level was also higher in 212 LC patients than that in 212 NC of validation cohort 1 (P < 0.05). The model 1 comprising 4 TAAbs and CEA reached an AUC of 0.813 (95%CI: 0.762-0.864) for diagnosing LC from normal individuals. Five TAAbs existed a significant difference between 105 malignant pulmonary nodules (MPNs) and 105 benign pulmonary nodules (BPNs) patients in validation cohort 2 (P < 0.05). Model 2 could distinguish MPNs from BPNs with an AUC of 0.845. High-throughput protein microarray is an efficient approach in discovering novel TAAbs which could be used as biomarkers in lung cancer diagnosis.


Asunto(s)
Neoplasias Pulmonares , Análisis por Matrices de Proteínas , Humanos , Autoanticuerpos , Biomarcadores de Tumor , Neoplasias Pulmonares/diagnóstico , Antígenos de Neoplasias
19.
Clin Immunol ; 255: 109753, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37678714

RESUMEN

Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by synovitis and joint damage, the underlying causes of which remain unclear. Our prior investigations revealed a notable correlation between the expression of Tyro3 Protein Tyrosine Kinase (Tyro3TK) and the progression of RA. To further elucidate the pathogenic role of Tyro3TK in RA, we analyzed the influence of Tyro3TK on pathogenic phenotypes of RA fibroblast like synoviocyte (FLS) in vitro and compared disease severity, joint damages and immunological parameters of K/BxN serum transfer arthritis (STA) in Tyro3TK-/- deficient mice and wild type controls. Our findings underscored the remarkable effectiveness of Tyro3TK blockade, as evidenced by diminished secretion of inflammatory cytokines and matrix metalloproteinases (MMPs), curtailed migration and invasiveness of RAFLS, and attenuated differentiation of pathogenic helper T cell subsets mediated by RAFLS. Correspondingly, our in vivo investigations illuminated the more favorable outcomes in Tyro3TK-deficient mice, characterized by reduced joint pathology, tempered synovial inflammation, and restored immune cell equilibrium. These data suggested that Tyro3TK might contribute to aggravated autoimmune arthritis and immunological pathology and act as a potential therapeutic target for RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Sinoviocitos , Ratones , Animales , Sinoviocitos/metabolismo , Movimiento Celular , Artritis Reumatoide/tratamiento farmacológico , Artritis Experimental/genética , Fibroblastos/metabolismo , Fenotipo , Proteínas Tirosina Quinasas/genética , Membrana Sinovial/metabolismo , Células Cultivadas
20.
Biochem Biophys Res Commun ; 681: 13-19, 2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37742473

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a significant etiological factor in liver-related diseases, which can lead to severe consequences such as steatohepatitis, cirrhosis and death. Cdh1 is considered as a crucial protein involved in cell cycle regulation. The purpose of this study is to explore the biological role of Cdh1 in NAFLD. MATERIALS AND METHODS: NAFLD cell model was established, and L02 cells and AML12 cells were infected by shRNA lentivirus with Cdh1 knockdown in vitro, and the effect of Cdh1 deletion on cell lipid deposition was evaluated. The effects of Cdh1 deletion on Akt phosphorylation and PPAR/PGC-1α signaling pathway in L02 cells were examined. In addition, the NAFLD mouse model was constructed, and the conditional knockout mice of Cdh1 were selected to verify the results. RESULTS: In vitro experiments showed that the Cdh1 deletion enhanced cell lipid deposition. In vivo experiments showed that conditional knockdown of Cdh1 aggravated fatty degeneration and damage of liver in mice. Cdh1 deletion promotes Akt phosphorylation and inhibits PPAR/PGC-1α signaling pathway in L02 cells. Conditional knockout of Cdh1 down-regulates PPAR/PGC-1α signaling pathway in NAFLD mouse model. CONCLUSION: The deletion of Cdh1 may promote Akt phosphorylation by up-regulating Skp2 and inhibit the PPAR/PGC-1α signaling pathway. Cdh1 serves a protective function in the occurrence and progression of NAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA