Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Small ; 20(13): e2307908, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37967355

RESUMEN

2D multilayered organic-inorganic hybrid perovskites (OIHPs) have exhibited bright prospects for high-performance self-driven X-ray detection due to their strong radiation absorption and long carrier transport. However, as an effective tool for self-driven X-ray detection, radiation photovoltaics remain rare, and underdeveloped in multilayered OIHPs. Herein, chirality to induce radiation photovoltaics in 2D multilayered chiral OIHPs is first utilized for efficient self-driven X-ray detection. Specifically, under X-ray irradiation, a multilayered chiral-polar (S-BPEA)2FAPb2I7 (1-S, S-BPEA = (S)-1-4-Bromophenylethylammonium, FA = formamidinium) shows remarkable radiation photovoltaics of 0.85 V, which endows 1-S excellent self-driven X-ray detection performance with a considerable sensitivity of 87.8 µC Gyair -1 cm-2 and a detection limit low to 161 nGyair s-1. Moreover, the sensitivity is high up to 1985.9 µC Gyair -1 cm-2 under 80 V bias, higher than most those of 2D OIHPs. These results demonstrate that chirality-induced radiation photovoltaics is an efficient strategy for self-driven X-ray detection.

2.
Small ; : e2401545, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837884

RESUMEN

Polar metal halide hybrid perovskites (PHPs) that exhibit outstanding bulk photovoltaic effect (BPVE), excellent semiconductor features, and strong radiation absorption ability, have shown prominent advantages in highly sensitive direct X-ray detection. However, it is still a challenge to explore PHPs with high BPVE temperature ranges, answering the demand of developing thermally stable passive X-ray detection. Herein, by intercalating arylamine into lead tribromide and inducing order-disorder phase transition, a 2D multilayered PHPs (BZA)2(MA)Pb2Br7 (BZPB, BZA = benzylamine, MA = methylamine) is synthesized. BZPB crystallizes in a polar space group Aea2 at a low-temperature phase and demonstrates a significant open-circuit of 0.3 V deriving from BPVE under X-ray irradiation. Meanwhile, the strong X-ray absorption coefficient and outstanding carrier transport capability of the bilayered lead halide framework associated with the polar BPVE give BZPB excellent X-ray detection abilities. At 0 V bias, the impressive sensitivity of BZPB is 98 µC Gy-1 cm-2. Importantly, the introduction of the rigid BZA ring increases the energy barrier of phase transition and thus dramatically enhances the X-ray detection operating temperature of BZPB up to 409 K without significant performance degradation. This work strongly reveals the great potential of rational design of metal halide hybrid perovskites for X-ray detection applications.

3.
Angew Chem Int Ed Engl ; 63(11): e202320180, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38196036

RESUMEN

Three-dimensional (3D) organic-inorganic hybrid perovskites (OIHPs) have achieved tremendous success in direct X-ray detection due to their high absorption coefficient and excellent carrier transport. However, owing to the centrosymmetry of classic 3D structures, these reported X-ray detectors mostly require external electrical fields to run, resulting in bulky overall circuitry, high energy consumption, and operational instability. Herein, we first report the unprecedented radiation photovoltage in 3D OIHP for efficient self-driven X-ray detection. Specifically, the 3D polar OIHP MhyPbBr3 (1, Mhy=methylhydrazine) shows an intrinsic radiation photovoltage (0.47 V) and large mobility-lifetime product (1.1×10-3  cm2 V-1 ) under X-ray irradiation. Strikingly, these excellent physical characteristics endow 1 with sensitive self-driven X-ray detection performance, showing a considerable sensitivity of 220 µC Gy-1 cm-2 , which surpasses those of most self-driven X-ray detectors. This work first explores highly sensitive self-driven X-ray detection in 3D polar OIHPs, shedding light on future practical applications.

4.
Angew Chem Int Ed Engl ; : e202407305, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090857

RESUMEN

Metal halide perovskite ferroelectrics combining spontaneous polarization and excellent semiconducting properties is an ideal platform for enabling self-driven X-ray detection, however, achievements to date have been only based on uniaxiality, which increases the complexity of device fabrication. Multi-axial ferroelectric materials have multiple equivalent polarization directions, making them potentially amenable to multi-axial self-driven X-ray detection, but the report on these types of materials is still a huge blank. Herein, a high-quality (BA)2(EA)2Pb3I10 (1) biaxial ferroelectric single crystal was successfully grown, which exhibited significant spontaneous polarization along the c-axis and b-axis. Under X-ray irradiation, bulk photovoltaic effect (BPVE) was exhibited along both the c-axis and b-axis, with open circuit voltages (Voc) of 0.23 V and 0.22 V, respectively. Then, the BPVE revealed along the inversion of polarized direction with the polarized electric fields. Intriguingly, due to the BPVE of 1, 1 achieved multi-axial self-driven X-ray detection for the first time (c-axis and b-axis) with relatively high sensitivities and ultralow detection limits (17.2 nGyair s-1 and 19.4 nGyair s-1, respectively). This work provides a reference for the subsequent use of multi-axial ferroelectricity for multi-axial self-driven optoelectronic detection.

5.
Small ; 19(46): e2304332, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37464560

RESUMEN

The 2D aromatic Dion-Jacobson (DJ) hybrid perovskites combining advantages of high stability, enhanced light absorption, and favorable charge transport, are regarded as a kind of very promising materials for high-performance optoelectronic applications. However, due to the rigidity and large size of the aromatic ring, how to further reduce the interlayer distance to achieve better carrier transport and wider light response window still remain extremely challenging. Here, an interesting DJ-to-ACI (alternating-cations-interaction) reconstruction in 2D aromatic perovskite is first realized by inserting MA+ cations into (4-AP)PbI4 (1, 4-AP = 4-amidinopyridinium), successfully constructing an unprecedented ACI perovskite of (4-AP)(MA)2 Pb2 I8 (2, MA = methylamine). Remarkably, such a DJ-to-ACI reconstruction not only effectively reduces the interlayer spacing from 3.89 to 3.15 Å but also alleviates the structural distortion, which jointly causes a significant bandgap narrowing from 2.22 to 1.95 eV (smaller than all current 2D monolayered DJ perovskites), hence achieving a broad photodetection window over 660 nm. This work reports a novel narrow bandgap 2D ACI perovskite derived from the aromatic DJ motif, which sheds light on future regulations on the structure and properties of hybrid perovskites.

6.
Chemistry ; 29(40): e202300667, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37115624

RESUMEN

Layered hybrid perovskites possess exceptional semiconductor features and structural versality, making them viable candidates for developing multifunctional dielectric phase-transition materials (PTMS). However, most PTMs based on layered hybrid perovskites still suffer from Pb toxicity and low operating temperature. The recently developed hybrid double perovskites provide a new routine to designed PTMs with desired working performance and environment-friendly chemical compositions. Herein, using rigid aromatic cations as templates, we have successfully synthesized a novel double perovskite (benzylammonium)4 AgBiBr8 (1), which consists of corner-sharing AgBr6 and BiBr6 layers and benzylammonium cations. Notably, 1 exhibits a high-temperature first-order reversible solid-state phase transition at 383/387 K (cooling/heating) and switchable dielectric performance around the temperature. Compared with the soft organic chain version of the compound, the phase transition temperature of 1 shows a large enhancement of 99 K, validating the correctness of the designing strategy. In addition, 1 also exhibits semiconductor characteristics with a calculated bandgap of 2.34 eV and an optical bandgap of 2.29 eV. Remarkably, the single crystal photodetector of 1 shows a low dark current (2.12×10-13  A), a high on/off ratio (1.77×103 ), and a fast response (τrise =125 µs and τdecay =419 µs). Such a lead-free phase transition material combined with semiconductor properties provides a new strategy to develop environmentally friendly multifunctional materials.

7.
Angew Chem Int Ed Engl ; 62(45): e202308445, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37574445

RESUMEN

Bulk photovoltaic effect, a promising optoelectronic phenomenon for generating polarized dependent steady-state photocurrent, has been widely applied in various photodetectors. However, incorporating stereochemically active lone pair to construct bulk photovoltage in organic-inorganic hybrid perovskite (OIHP) is still elusive and challenging. Herein, bulk photovoltage (1.2 V) has been successfully achieved by introducing the stereo-chemically active lone pair perovskitizer to construct a polar tri-layered hybrid perovskite, namely, (IBA)2 MHy2 Pb3 Br10 (1, IBA=iso-butylamine, MHy=methylhydrazine). Strikingly, owning to the promising bulk photovoltage, 1-based detectors exhibit an ultra-highly sensitive polarized photodetection (polarization ratio of up to 24.6) under self-powered mode. This ratio surpasses all the reported two-dimension OIHP single-crystal photodetectors. In addition, detectors exhibit outstanding responsivity (≈200 mA W-1 ) and detectivity (≈2.4×1013 Jones). More excitingly, further investigation confirms that lone pair electrons in MHy+ result in the separation of positive and negative charges to produce directional dipoles, which further directional alignment to generate bulk photovoltage, thereby resulting in polarization-dependent photocurrent. Our findings provide a new demonstration for polar multilayer materials' construction and may open opportunities for a host of high-sensitive polarized photodetection.

8.
Angew Chem Int Ed Engl ; 62(32): e202307034, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37323070

RESUMEN

Chiral three-dimensional hybrid organic-inorganic perovskites (3D HOIPs) would show unique chiroptoelectronic performance due to the combination of chirality and 3D structure. However, the synthesis of 3D chiral HOIPs remains a significant challenge. Herein, we constructed a pair of unprecedented 3D chiral halide perovskitoids (R/S-BPEA)EA6 Pb4 Cl15 (1-R/S) (R/S-BPEA=(R/S)-1-4-Bromophenylethylammonium, EA=ethylammonium), in which the large chiral cations can be contained in the big "hollow" inorganic frameworks induced by mixing cations. Notably, 3D 1-R/S shows natural chiroptical activity, as evidenced by its significant mirror circular dichroism spectra and the ability to distinguish circularly polarized light. Moreover, based on the unique 3D structure, 1-S presents sensitive X-ray detection performance with a low detection limit of 398 nGyair s-1 , which is 14 times lower than the regular medical diagnosis of 5.5 µGyair s-1 . In this work, 3D chiral halide perovskitoids provide a new route to develop chiral material in spintronics and optoelectronics.

9.
J Am Chem Soc ; 144(39): 18062-18068, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36150159

RESUMEN

Chiral hybrid perovskites (CHPs), aggregating chirality and favorable semiconducting properties in one, have taken a prominent position in direct circularly polarized light detection (CPL). However, passive high circular polarization sensitivity (gres) photodetection in CHPs is still elusive and challenging. Benefitting from efficient control and turning of carrier transport of CHPs by dimensional engineering, here, we unprecedentedly proposed a chain-to-layer dimensionality engineering to realize high-gres passive photodetection. Two novel 2D layered CHPs (R/S-PPA)EAPbBr4 (2R/2S) (PPA = 1-phenylpropylamine, EA = ethylammonium) are successfully synthesized by alloying an EA cation with small steric hindrance into the chained CHPs (R/S-PPA)PbBr3 (1R/1S). Particularly, compared with the neglectable photoresponse in 1R, the obtained 2R by chain-to-layer dimensionality engineering gives rise to an excellent photoconductivity and robust polar photovoltage effect (PPE) with a giant open-circuit voltage of 2.5 V. Furthermore, such PPE promotes realizing an impressive gres in 2R up to 0.42 at zero bias because of the independent separation of photoexcited carriers, which is the highest value among the reported layered chiral perovskites. This work paves the way for the vigorous development of higher dimensional CHPs and will reveal their applications in the field of passive high-gres CPL detection.

10.
Small ; 18(51): e2203571, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36344457

RESUMEN

Multilayered chiral hybrid perovskites are highly desired for highly-sensitive circularly polarized light (CPL) detection rooted in their efficient charge transport and strong chiroptical activity. However, designing multilayered chiral hybrid perovskites remains a huge challenge. Here, through pairing achiral ethylamine (EA)-chiral arylamine in the interlayer space, multilayered chiral alternating cations intercalation-type (ACI) hybrid perovskites (R-/S-PPA) EA2 Pb2 Br7 (PPA = 1-phenylpropylamine) are successfully obtained. Significantly, perovskitizer EA extends the thickness of the quantum well and alternating space cation EA greatly alleviates in-plane tilting distortions of adjacent metal halide octahedra, providing fast channels for in-plane carrier transport. Consequently, single-crystal photodetectors of (R-/S-PPA) EA2 Pb2 Br7 exhibit high circular polarization sensitivity with a large anisotropy factor of 0.3, which falls around the highest value among the layered hybrid perovskites. In addition, a fast responding rate (τr )of 308 µs and a high CPL-detectivity of 8 × 1012 Jones are also presented. This work opens up a new perspective to design multilayered chiral hybrid perovskites for high-sensitive CPL detection.


Asunto(s)
Compuestos de Calcio , Plomo , Cationes
11.
Chemistry ; 28(35): e202200849, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35434869

RESUMEN

Quasi-two-dimensional (Q-2D) Dion-Jacobson (DJ) organic-inorganic hybrid perovskites based on CsPbBr3 are promising candidates for photodetection. Previous studies have predicted that the photoresponse of such materials with high inorganic-layer numbers (n) will be more protruding in this portfolio. However, until now, only bilayered (n=2) CsPbBr3 -based DJ-type hybrid perovskites are obtained and the higher number of layers (n>2) remain completely unexplored, owing to the relatively high formation energies. Here, by incorporating diamine into the 3D CsPbBr3 motif, a new Q-2D trilayered CsPbBr3 -based DJ-type hybrid perovskite that contains organic cation and inorganic Cs metal, namely (4-AMP)Cs2 Pb3 Br10 (1, 4-AMP2+ =4-(aminomethyl)piperidinium, n=3), is obtained. Excitingly, 1 exhibits excellent photoresponse, superior to its single-layered and bilayered counterparts. The resulting photodetectors thus exhibit a large on/off ratio (>103 ), high photodetectivity (6.5×1010  Jones) and fast response speed (193 µs). As far as we know, 1 is the first Q-2D CsPbBr3 -based DJ-type hybrid perovskites with high n numbers. Our results may widen the range of the potential material in application of photodetection and will be helpful to design hybrid perovskites for other advanced optoelectronic devices.

12.
J Am Chem Soc ; 143(35): 14077-14082, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34428042

RESUMEN

Circularly polarized light (CPL)-sensitive direct detection is attracting increasing attention owing to its various optical technology applications and ultracompact device structures. However, current CPL-sensitive direct detection mainly focuses on a single mode, whereas the visible-near-infrared (vis-NIR) dual-modal detection, which is important for improving device sensitivity and night-vision performance, still remains to be explored. Here, for the first time, the vis-NIR dual-modal CPL-sensitive direct detection is presented in bulk single crystals of two-dimensional chiral perovskite (R-BPEA)2PbI4 (R-BPEA = (R)-1-(4-bromophenyl)ethylammonium). Benefiting from the strong light-matter interaction of the layered structure, (R-BPEA)2PbI4 shows a two-photon absorption (TPA) coefficient of up to 55 cm/MW, which almost falls around the highest value of 2D hybrid perovskites. Notably, (R-BPEA)2PbI4 exhibits a high vis-NIR dual-modal CPL-sensitive direct detecting performance under both visible light (520 nm) and NIR light (800 nm), with the on/off ratios of current higher than 103, and the anisotropy factors for photocurrent higher than 0.1. This work will shed light on the design of new chiral semiconductors with a large TPA coefficient and promote their applications in vis-NIR dual-modal CPL-sensitive direct detection.

13.
J Am Chem Soc ; 143(20): 7593-7598, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33999599

RESUMEN

High-Curie-temperature (Tc) ferroelectrics have exhibited broad applications in optoelectronic devices. Recently, two-dimensional multilayered perovskite ferroelectrics with excellent photoelectric attributes are attracting increasing interest as new systems of photoferroelectrics. However, the effective tuning of the Tc value of a multilayered perovskite photoferroelectric system still remains a huge challenge. Here, by a halogen substitution strategy to introduce bromine atoms on n-propylamine cations, the hybrid perovskite photoferroelectric (3-bromopropylaminium)2(formamidinium)Pb2Br7 (BFPB) with a high Tc value (348.5 K) was obtained. It is notable that BFPB adopts a two-dimensional bilayered inorganic framework, with tight linking to the organic cation by C-Br···Br-Pb halogen···halogen interactions and N-H···Br hydrogen bonds. Intriguingly, in comparison with the prototypical compound (n-propylaminium)2(formamidinium)Pb2Br7, a remarkable augmentation of 85.2 K in the resulting Tc value of BFPB is clearly observed, which further broadens the temperature range of its application. In combination with the remarkable ferroelectric and semiconducting attributes, the reversible bulk photovoltaic effect was realized in single crystals of BFPB. This finding can not only enhance the hybrid perovskite ferroelectric family but also further promote the photoelectric application of ferroelectrics.

14.
Adv Sci (Weinh) ; : e2404403, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044359

RESUMEN

Photopyroelectric-based circularly polarized light (CPL) detection, coupling the pyro-phototronic effect and chiroptical phenomena, has provided a promising platform for high-performance CPL detectors. However, as a novel detection strategy, photopyroelectric-based CPL detection is currently restricted by the short-wave optical response, underscoring the urgent need to extend its response range. Herein, visible-to-near-infrared CPL detection induced by the pyro-phototronic effect is first realized in chiral-polar perovskites. Specifically, chiral-polar multilayered perovskites (S-BPEA)2FAPb2I7 (1-S, S-BPEA = (S)-1-4-Bromophenylethylammonium, FA = formamidinium) with spontaneous polarization shows intrinsic pyroelectric and photopyroelectric performance. Strikingly, combining its merits of the pyro-phototronic effect and intrinsic wide-spectrum spin-selective effect, chiral multilayered 1-S presents efficient photopyroelectric-based broadband CPL detection performance spanning 405-785 nm. This research first realizes photopyroelectric-based infrared CPL detection and also sheds light on developing high-performance broadband CPL detectors based on the pyro-phototronic effect in the fields of optics, optoelectronics, and spintronics.

15.
ACS Appl Mater Interfaces ; 16(32): 42372-42379, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39092510

RESUMEN

2D organic-inorganic hybrid perovskites (OIHPs) have shown great promise in direct X-ray detection. The development of high-performance passive X-ray detectors in 2D OIHPs calls for an increase in material density while maintaining structural polarity, which is becoming quite challenging. Here, a high-density, polar 2D alternating-cation-intercalated (ACI) perovskite, (4-AP)Cs2Pb2I8 (B, 4-AP = 4-amidinopyridinium), capable of addressing this problem is successfully constructed by introducing heavy Cs+ into the interlayer space of an aromatic Dion-Jacobson (DJ) perovskite (4-AP)PbI4 (A). Through such a DJ-to-ACI design, the newly developed 2D OIHP B not only significantly increases its density to 4.23 g cm-3 (even higher than that of 3D MAPbI3) but also crystallizes in a polar space group (Ama2), which further leads to enhanced X-ray attenuation and an obvious polar photovoltage (1.1 V) under X-ray irradiation. As a result, X-ray detectors fabricated by high-quality single crystals of B exhibit excellent and stable detection performance under self-powered mode with a high sensitivity of 107 µC Gy-1 cm-2 and a low detection limit of 289 nGy s-1. This work provides implications for the future exploration and regulation of novel ACI OIHPs for high-performance photoelectronic devices.

16.
J Tradit Chin Med ; 43(4): 809-814, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37454267

RESUMEN

OBJECTIVE: To provide the evidence for the efficacy of acupoint application (AA) for patients with diarrhea in a real-world setting. METHODS: This study is a national multicenter retrospective cohort study. Our study consecutively collected outpatient medical records of patients with diarrhea from hundreds of primary hospitals nationwide registered in Chun Bo Wan Xiang cloud platform from 22nd August, 2020 to 5th November, 2020. The patients were divided into the treatment group and the control group according to patient's condition and willingness. The control group was treated with Western Medicine, oral Chinese Medicine decoction, or both. The treatment group was added with AA based on the control group. Multiple logistic regression was used to evaluate the independent efficacy of AA in diarrheal recovery on the 3rd, 7th, 14th and 28th day. As a next step, we also performed stratified analysis and likelihood ratio test (LRT). Sensitivity analyses included propensity score matching (PSM), four PSM-related analyses and E-value. RESULTS: The treatment group showed better efficacy than the control group on the 14th and 28th day [the 14th day: = 1.58, 95% (1.15, 2.19), 0.005; the 28th day: = 2.03, 95% (1.43, 2.88), < 0.001]. No difference was observed in efficacy of AA for the treatment of diarrhea among the subgroups ( > 0.05). PSM-related analyses confirmed the efficacy of AA in diarrheal recovery. The findings are unlikely to be nullified by an unmeasured confounding variable according to the results of E-values. CONCLUSIONS: The efficacy in the treatment group was significantly more improved than that in the control group on the 14th and 28th day.


Asunto(s)
Puntos de Acupuntura , Diarrea , Humanos , Estudios Retrospectivos , Diarrea/tratamiento farmacológico , China , Resultado del Tratamiento
17.
Adv Sci (Weinh) ; 10(9): e2206070, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36683152

RESUMEN

Organic-inorganic hybrid perovskites carry unique semiconducting properties and advanced flexible crystal structures. These characteristics of organic-inorganic hybrid perovskites create a promising candidacy for circularly polarized light (CPL) detection. However, CPL detections based on chiral perovskites are limited to UV and visible wavelengths. The natural quantum well structures of layered hybrid perovskites generate strong light-matter interactions. This makes it possible to achieve near-infrared (NIR) CPL detection via two-photon absorption in the sub-wavelength region. In this study, cooperative strategies of dimension increase and mixed spacer cations are used to obtain a pair of chiral multilayered perovskites (R-ß-MPA)EA2 Pb2 Br7 and (S-ß-MPA)EA2 Pb2 Br7 (MPA = methylphenethylammonium and EA = ethylammonium). The distinctive bi-cations interlayer and multilayered inorganic skeletons provide enhanced photoconduction. Moreover, superior photoconduction leads to the prominent NIR CPL response with a responsivity up to 8.1 × 10-5 A W-1 . It is anticipated that this work can serve as a benchmark for the fabrication and optimization of efficient NIR CPL detection by simple chemical design.

18.
Environ Sci Technol ; 46(7): 4207-14, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22380753

RESUMEN

Published emission factors (EFs) often vary significantly, leading to high uncertainties in emission estimations. There are few reliable EFs from field measurements of residential wood combustion in China. In this study, 17 wood fuels and one bamboo were combusted in a typical residential stove in rural China to measure realistic EFs of particulate matter (PM), organic carbon (OC), and elemental carbon (EC), as well as to investigate the influence of fuel properties and combustion conditions on the EFs. Measured EFs of PM, OC, and EC (EF(PM), EF(OC), and EF(EC), respectively) were in the range of 0.38-6.4, 0.024-3.0, and 0.039-3.9 g/kg (dry basis), with means and standard derivation of 2.2 ± 1.2, 0.62 ± 0.64, and 0.83 ± 0.69 g/kg, respectively. Shrubby biomass combustion produced higher EFs than tree woods, and both species had lower EFs than those of indoor crop residue burning (p < 0.05). Significant correlations between EF(PM), EF(OC), and EF(EC) were expected. By using a nine-stage cascade impactor, it was shown that size distributions of PM emitted from tree biomass combustions were unimodal with peaks at a diameter less than 0.4 µm (PM(0.4)), much finer than the PM from indoor crop residue burning. Approximately 79.4% of the total PM from tree wood combustion was PM with a diameter less than 2.1 µm (PM(2.1)). PM size distributions for shrubby biomasses were slightly different from those for tree fuels. On the basis of the measured EFs, total emissions of PM, OC, and EC from residential wood combustion in rural China in 2007 were estimated at about 303, 75.7, and 92.0 Gg.


Asunto(s)
Contaminantes Atmosféricos/análisis , Carbono/análisis , Incendios , Artículos Domésticos , Tamaño de la Partícula , Material Particulado/análisis , Madera/química , China , Geografía , Humedad , Compuestos Orgánicos/análisis , Población Rural , Volatilización
19.
ACS Appl Mater Interfaces ; 14(32): 36781-36788, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35917147

RESUMEN

Chiral metal halide perovskites (CMHPs) have recently shown great potential for direct circularly polarized light (CPL) detection. However, owing to the limited cutoff wavelength edge of these CMHPs, most of the detectors presented thus far are characterized only in the ultraviolet and visible range; CMHPs that target at the near-infrared (NIR) region are still greatly desired. Here, we design a novel CMHP heterostructure, synthesized via solution-processed epitaxial growth of crystalline 3D MAPbI3 on a 2D chiral (R-BPEA)2PbI4 (R-BPEA = (R)-1-(4-bromophenyl)ethylammonium) crystal, and provide the first demonstration of self-powered direct NIR-CPL detection. Compared with individual chiral (R-BPEA)2PbI4, the heterostructure not only retains the spin selectivity but also allows much broader absorbance, especially beyond 780 nm, where the (R-BPEA)2PbI4 cannot absorb. Furthermore, the built-in electric potential in the heterojunction forces spontaneous separation/transport of photogenerated carriers, enabling the fabrication of devices operating without external energy supply. By making use of the abovementioned advantages, the self-powered CPL detectors of the (R-BPEA)2PbI4/MAPbI3 heterostructures hence show competitive circular polarization sensitivity at 785 nm with a high anisotropy factor of up to 0.25. In addition, a large on/off switching ratio of ∼105 and an impressive detectivity of ∼1010 Jones are also achieved. As a pioneer study, our results may broaden the material scope for future chiroptical devices based on CMHPs.

20.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 32(10): 1292-1296, 2018 10 15.
Artículo en Zh | MEDLINE | ID: mdl-30215498

RESUMEN

Objective: To review the progress of knee-salvage treatment based on the step therapy idea for knee osteoarthritis (KOA). Methods: The domestic and foreign literature in recent years was searched, and the treatments of KOA at different stages were summarized and analyzed. Results: The treatment of KOA is aimed at alleviating symptoms, delaying structural changes of joints, maintaining joint function, and improving quality of life. So the conservative treatment is still the first choice for KOA at early stage. Arthroscopic surgery can assist in the diagnosis and classification, simultaneously remove the intra-articular irritants, and limitedly repair the cartilage. Osteotomy is suitable for the KOA with abnormal lower extremity weight bearing line and articular line. And it can effectively balance the weight bearing stress of knee joint, improve the clinical symptom, and alleviate the progression of disease. Joint distraction can improve the mechanical environment of knee joint and repair the defect cartilage partly. With the technical development, unicompartmental knee arthroplasty (UKA) is back in fashion in recent years. It is a kind of real joint surface replacement, which is an important means of knee preservation method in patients with anterior medial KOA. Conclusion: At present, there are many knee-salvage treatments based on the severity of the disease. Osteotomy and UKA are the most widely used and successful surgical techniques for knee preservation. However, the indications should be properly selected, and the surgeon should accumulate enough clinical experience. Otherwise, it is difficult to achieve good results.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Osteoartritis de la Rodilla , Terapia Recuperativa , Humanos , Articulación de la Rodilla , Osteoartritis de la Rodilla/cirugía , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA