Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 151(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38603796

RESUMEN

Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.


Asunto(s)
Diapausa , Nutrientes , Animales , Femenino , Ratones , Blastocisto/metabolismo , Diapausa/fisiología , Desarrollo Embrionario/fisiología
2.
Angew Chem Int Ed Engl ; : e202410900, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010737

RESUMEN

MnO2 is commonly used as the cathode material for aqueous zinc-ion batteries (AZIBs). The strong Coulombic interaction between Zn ions and the MnO2 lattice causes significant lattice distortion and, combined with the Jahn-Teller effect, results in Mn2+ dissolution and structural collapse. While proton intercalation can reduce lattice distortion, it changes the electrolyte pH, producing chemically inert byproducts. These issues greatly affect the reversibility of Zn2+ intercalation/extraction, leading to significant capacity degradation of MnO2. Herein, we propose a novel method to enhance the cycling stability of δ-MnO2 through selenium doping (Se-MnO2). Our work indicates that varying the selenium doping content can regulate the intercalation ratio of H+ in MnO2, thereby suppressing the formation of ZnMn2O4 by-products. Se doping mitigates the lattice strain of MnO2 during Zn2+ intercalation/deintercalation by reducing Mn-O octahedral distortion, modifying Mn-O bond length upon Zn2+ insertion, and alleviating Mn dissolution caused by the Jahn-Teller effect. The optimized Se-MnO2 (Se concentration of 0.8 at.%) deposited on carbon nanotube demonstrates a notable capacity of 386 mAh g-1 at 0.1 A g-1, with exceptional long-term cycle stability, retaining 102 mAh g-1 capacity after 5000 cycles at 3.0 A g-1.

3.
Anal Chem ; 95(8): 4104-4112, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36688529

RESUMEN

Significant progress has been made in nanomaterial-modified electrodes for highly efficient electroanalysis of arsenic(III) (As(III)). However, the modifiers prepared using some physical methods may easily fall off, and active sites are not uniform, causing the potential instability of the modified electrode. This work first reports a promising practical strategy without any modifiers via utilizing only soluble Fe3+ as a trigger to detect trace-level As(III) in natural water. This method reaches an actual detection limit of 1 ppb on bare glassy carbon electrodes and a sensitivity of 0.296 µA ppb-1 with excellent stability. Kinetic simulations and experimental evidence confirm the codeposition mechanism that Fe3+ is preferentially deposited as Fe0, which are active sites to adsorb As(III) and H+ on the electrode surface. This facilitates the formation of AsH3, which could further react with Fe2+ to produce more As0 and Fe0. Meanwhile, the produced Fe0 can also accelerate the efficient enrichment of As0. Remarkably, the proposed sensing mechanism is a general rule for the electroanalysis of As(III) that is triggered by iron group ions (Fe2+, Fe3+, Co2+, and Ni2+). The interference analysis of coexisting ions (Cu2+, Zn2+, Al3+, Hg2+, Cd2+, Pb2+, SO42-, NO3-, Cl-, and F-) indicates that only Cu2+, Pb2+, and F- showed inhibitory effects on As(III) due to the competition of active sites. Surprisingly, adding iron power effectively eliminates the interference of Cu2+ in natural water, achieving a higher sensitivity for 1-15 ppb As(III) (0.487 µA ppb-1). This study provides effective solutions to overcome the potential instability of modified electrodes and offers a practical sensing platform for analyzing other heavy-metal anions.

4.
Small ; : e2309523, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072626

RESUMEN

The separator located between the positive and negative electrodes not only provides a lithium-ion transmission channel but also prevents short circuits for direct contact of electrodes. The inferior dimension thermostability of commercial polyolefin separators intensifies the thermal runaway of batteries under abuse such as short circuits, overcharge, and so on. a polyvinylidene fluoride/polyether imide (PVDF/PEI) separator with high thermal stability in which the high thermostable PEI microspheres are evenly dispersed in the PVDF film matrix and also located in the micro holes of the PVDF film is developed. They not only function as strong skeleton that enables the rare shrink of the separator at 200 °C avoiding short circuit but also act as ball valve that blocks the lithium ion transmission channel at 150 °C interrupting the further heat aggregation. Thus, the LiNi0.6 Co0.2 Mn0.2 O2 /Li batteries exhibit high cycle stability of 96.5% capacity retention after 100 cycles at 0.2C and 80°C. Further, the LiNi0.6 Co0.2 Mn0.2 O2 /graphite pouch cells are constructed and deliver good safety performance without smoke release and catching fire after the nail penetration test.

5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(10): 1241-1245, 2023 Oct 10.
Artículo en Zh | MEDLINE | ID: mdl-37730224

RESUMEN

OBJECTIVE: To explore the laboratory phenotype and molecular pathogenesis in a Chinese pedigree affected with Hereditary coagulation factor Ⅻ (FⅫ) deficiency. METHODS: A male proband admitted to Ningbo No.2 Hospital on July 17, 2021 due to chronic gastritis and members of his pedigree (7 individuals from three generations) were selected as the study subjects. Prothrombin time (PT), activated partial thromboplastin time (APTT), FⅧ activity (FⅧ: C), FⅨ activity (FⅨ: C), FⅪ activity (FⅪ: C), FⅫ activity (FⅫ: C), and FⅫ antigen (FⅫ: Ag) were determined. All of the exons, exon-intronic boundaries, as well as the 5'- and 3'-untranslated regions of the F12 gene were subjected to Sanger sequencing. Candidate variants were verified by cloning sequencing. The effect of candidate variants on the protein function was analyzed by bioinformatics software. RESULTS: The proband, a 47-year-old male, had significantly prolonged APTT (180.0 s) and decreased FⅫ:C and FⅫ:Ag levels (< 1%). His father, mother, brother and two sons also showed certain degrees of reduction. Genetic testing revealed that the proband has harbored compound heterozygous variants of the F12 gene, namely c.1092_1093insC (p.Lys365Glnfs*69) in exon 10 and c.1792_1796delGTCTA (p.Val579Hisfs*32) in exon 14. His mother and elder son were heterozygous for the c.1092_1093ins variant, whilst his father, brother, and younger son were heterozygous for the c.1792_1796delGTCTA variant. Analysis of the promoter region of exon 1 also showed that the proband and both sons had harbored a 46T/T polymorphism, whilst other family members were 46C/T. Bioinformatic analysis suggested that the p.Val579 is a highly conserved site. Protein model analysis showed that, with the p.Val579Hisfs*32 variant, a benzene ring was added and the hydrogen bond of surrounding amino acids was changed. Based on the guidelines from the American College of Medical Genetics and Genomics, the c.1792_1796delGTCTA was classified as a pathogenic variant (PVS1+PM2_Supporting+PM4). CONCLUSION: The c.1092_1093insC (p.Lys365Glnfs*69) and c.1792_1796delGTCTA (p.Val579Hisfs*32) compound heterozygous variants of the F12 gene probably underlay the decreased FXII levels in this pedigree. Above finding has also enriched the mutational spectrum for FⅫ deficiency.


Asunto(s)
Pueblos del Este de Asia , Deficiencia del Factor XII , Masculino , Humanos , Anciano , Persona de Mediana Edad , Linaje , Exones , Intrones , Familia , Deficiencia del Factor XII/genética , Regiones no Traducidas 3' , Factor XII/genética
6.
Small ; 18(44): e2203347, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36108140

RESUMEN

Although rechargeable zinc-ion batteries are promising candidates for next-generation energy storage devices, their inferior performance at subzero temperatures limits their practical application. Here, a strategy to destroy the H-bond network by adding synergistic chaotropic regents is reported, thus reducing the freezing point of the aqueous electrolyte below -90 °C. Owing to the synergistic chaotropic effect between urea and Zn(ClO4 )2 and the thermal release effect on the cathode interface during charging, Zn//VO2 batteries feature a specific capacity of 111.4 mAh g-1 and stability after ≈1000 cycles with 81.9% capacity retention at -40 °C. This work demonstrates that the synergistic chaotropic effect and the thermal effect on the interface can effectively widen the operation range of temperature of aqueous electrolytes and maintain fast kinetics, which provides a new design strategy for all-weather aqueous zinc batteries.

7.
J Transl Med ; 20(1): 185, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468852

RESUMEN

BACKGROUND: Microlbuminuria is the earliest clinical evidence of diabetic kidney disease (DKD) and contributes to the induction and/or progression of DKD. Previous studies have shown that increased expression of angiopoietin2 (ANGPT2) is correlated with an increase in albuminuria. However, the critical role of ANGPT2 in albuminuria development remains unclear. Some studies have shown the significance of transcytosis in the occurrence of albuminuria, but it is unknown whether it takes place in albumin recycling in renal tubular cells of patients with DKD. Furthermore, the potential mechanism of this association also remains unclear. METHODS: In this study, human renal tubular epithelial cells (HK-2) were cultured with high glucose in a Transwell plate to establish a transcytosis model, while C57BL/6 mice were intraperitoneally injected with streptozotocin to establish a DKD model. The expression of ANGPT2 and caveolin1 (CAV1) phosphorylation was dectected through immunohistochemistry and western blot analysis. RESULTS: Transcytosis of albumin in renal tubular epithelial cells was downregulated after high glucose exposure, and increased expression of ANGPT2 and CAV1 phosphorylation both in vivo and in vitro was observed. Inhibition of ANGPT2 and CAV1 independently promoted transcytosis. Furthermore, ANGPT2 downregulation inhibited CAV1 phosphorylation, whereas CAV1 phosphorylation had no effect on the expression of ANGPT2. CONCLUSIONS: ANGPT2 reduces albumin transcytosis across renal tubular epithelial cells under high glucose conditions by activating CAV1 phosphorylation, thus increasing albuminuria in DKD. These findings suggested that ANGPT2 and CAV1 may be promising therapeutic targets for albuminuria in DKD.


Asunto(s)
Albuminuria , Transcitosis , Albúminas/metabolismo , Albuminuria/complicaciones , Animales , Células Epiteliales/metabolismo , Femenino , Glucosa/metabolismo , Glucosa/toxicidad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación
8.
J Nanobiotechnology ; 20(1): 356, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918726

RESUMEN

BACKGROUND: Due to their prevalence, dental caries ranks first among all diseases endangering human health. Therefore, the prevention of caries is of great significance, as caries have become a serious public health problem worldwide. Currently, using nanoscale drug delivery systems to prevent caries has received increased attention. However, the preventive efficacy of these systems is substantially limited due to the unique physiological structure of cariogenic biofilms. Thus, novel strategies aimed at combating cariogenic biofilms to improve preventive efficiency against caries are meaningful and very necessary. Herein, inspired by cell membrane coating technology and Lactobacillus strains, we coated triclosan (TCS)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TCS@PLGA-NPs) with an envelope of Lactobacillus (LA/TCS@PLGA-NPs) and investigated their potential as a nanoparticle delivery system against cariogenic biofilms and dental caries. RESULTS: LA/TCS@PLGA-NPs were successfully prepared with favorable properties, including a coated envelope, controllable size, negative charge, sustained drug-release kinetics and so on. The LA/TCS@PLGA-NPs inherited native properties from the source cell surface, thus the LA/TCS@PLGA-NPs adhered to S. mutans, integrated into the S. mutans biofilm, and interfered with the biofilm formation of S. mutans. The nanoparticles significantly inhibited the activity, biomass and virulence gene expression of S. mutans biofilms in vitro. Additionally, LA/TCS@PLGA-NPs exhibited a long-lasting inhibitory effect on the progression of caries in vivo. The safety performance of the nanoparticles is also favorable. CONCLUSIONS: Our findings reveal that the antibiofilm effect of LA/TCS@PLGA-NPs relies not only on the inheritance of native properties from the Lactobacillus cell surface but also on the inhibitory effect on the activity, biomass and virulence of S. mutans biofilms. Thus, these nanoparticles could be considered feasible candidates for a new class of effective drug delivery systems for the prevention of caries. Furthermore, this work provides new insights into cell membrane coating technology and presents a novel strategy to combat bacterial biofilms and associated infections.


Asunto(s)
Caries Dental , Nanopartículas , Antibacterianos/farmacología , Biopelículas , Membrana Celular , Caries Dental/tratamiento farmacológico , Caries Dental/prevención & control , Humanos , Lactobacillus , Streptococcus mutans
9.
BMC Pregnancy Childbirth ; 22(1): 624, 2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933360

RESUMEN

OBJECTIVES: To evaluate pelvic floor muscle strength using surface electromyography and risk factors for pelvic floor muscle strength in the early postpartum period. METHODS: This retrospective study included 21,302 participants who visited Fujian Maternity and Child Health Hospital from September 2019 to February 2022. All participants were assessed by medical professionals for general information and surface electromyography. RESULTS: Univariate analysis indicated that age was inversely related to tonic and endurance contractions. In contrast, all the other variables, including education level, body mass index, neonatal weight, and number of fetuses, had a positive impact on rapid, tonic, and endurance contractions. Likewise, parity was also positively associated with rapid contractions. In addition, compared with vaginal delivery, cesarean section delivery had a protective effect on the amplitude of the three types of contractions. Stepwise regression analysis showed that both age and neonatal weight had a negative linear relationship with the amplitude of rapid, tonic and endurance contractions. In contrast, the amplitude of rapid, tonic and endurance contractions significantly increased as body mass index, parity (≤ 3), education level and gestational weight gain (endurance contractions only) increased. Participants with cesarean section delivery showed positive effects on rapid, tonic, and endurance contractions compared to participants with vaginal delivery. CONCLUSIONS: We found that age, neonatal weight, vaginal delivery, episiotomy, and forceps delivery were risk factors for pelvic floor muscle strength; in contrast, body mass index, parity (≤ 3) and gestational weight gain had a positive relationship with pelvic floor muscle strength.


Asunto(s)
Ganancia de Peso Gestacional , Diafragma Pélvico , Cesárea/efectos adversos , Niño , China , Femenino , Humanos , Recién Nacido , Contracción Muscular , Fuerza Muscular/fisiología , Embarazo , Estudios Retrospectivos , Factores de Riesgo
10.
Small ; 17(36): e2101881, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34312985

RESUMEN

The application of Li metal anodes is currently hindered by the uncontrolled growth of Li dendrites. Herein, the effects of a modified separator with a high Li+ transference number (t+ ) on the structure and electrochemical performance of Li metal anodes are reported. Stable and dendrite-free plating/stripping cycles are achieved under current densities up to 5 mA cm-2 and areal capacities up to 20 mAh cm-2 . The uniformly grown Li grains under the high t+ environment also exhibit well-defined textures (preferred orientations). At a low plating capacity, epitaxial growth takes place on the {100} textures already existing in the rolled Li foils and the uniform Li+ flux strengthens this preferred orientation. Increasing the plating capacity to 20 mAh cm-2 , the later-grown textures change to {110} due to the reduced space charges and alleviated transport limits of Li+ under the high t+ environment, which favor the exposure of the close-packed {110} planes. Compression-induced <111> fiber textures are also resolved and the content increases with the plating capacity. Identification of the textures is meaningful for the exploration of advanced epitaxial substrates beyond Cu foils for high-energy-density Li metal batteries. LiS pouch cells are finally evaluated for the potential application of the modified separator.

11.
Environ Res ; 195: 110867, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33582130

RESUMEN

Ambient air pollution has been identified as one of the leading causes of global burden of disease. The relationship between ambient air pollution exposure and risk of chronic kidney disease (CKD) has stimulated increasing scientific interest in the past few years. However, evidence from human epidemiological studies is still limited and inconsistent. We performed an updated systematic review and meta-analysis to clarify the potential association comprehensively. Selected electronic databases were searched for related English language studies until March 1, 2020 with a final follow-up in December 31, 2020. Risk of bias assessment for individual studies were assessed using the OHAT (Office of Health Assessment and Translation) risk-of-bias rating tool. Confidence rating and level-of-evidence conclusions were developed for bodies of evidence for a given ambient air pollutant. Summary effect estimates were calculated using random-effects meta-analyses when three or more studies are identified for the same air pollutant-CKD combination. A total of 13 studies were finally identified in our study. The meta-analytic estimates (ORs) for risk of CKD were 1.15 (95% CI: 1.07, 1.24) for each 10 µg/m3 increase in PM2.5, 1.25 (95% CI: 1.11, 1.40) for each 10 µg/m3 increase in PM10, 1.10 (95% CI: 1.03, 1.17) for each 10 ppb increase in NO2, 1.06 (95% CI: 0.98, 1.15) for each 1 ppb increase in SO2 and 1.04 (95% CI: 1.00, 1.08) for each 0.1 ppm increase in CO, respectively. The level of evidence was appraised as moderate for four of the five tested air pollutant-CKD combinations using an adaptation of the GRADE (Grading of Recommendations Assessment, Development and Evaluation) tool. In conclusion, this study suggests that certain ambient air pollutant exposure was significantly associated with an increased risk of CKD. Given the limitations, the results of this study should be interpreted with caution, and further well-designed epidemiological studies are needed to draw a definite evidence of a causal relationship.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Insuficiencia Renal Crónica , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Material Particulado/análisis , Material Particulado/toxicidad , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/epidemiología
12.
Anal Chem ; 91(15): 9978-9985, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31246003

RESUMEN

Although it has been recognized that the interference between heavy metal ions (HMIs) becomes a severe problem for the simultaneous electroanalysis of multiple HMIs, the factor leading to the interference is still difficult to identify, due to the limited understanding of the electroanalytic kinetics. In this work, a kinetic model is built for the electroanalysis of HMIs, and the electroanalytic results are simulated for Cd(II), Cu(II), and their mixture as examples for the interference investigation. The mutual interference between Cd and Cu is observed on the glassy carbon electrode. By applying the kinetic model, the replacement of deposited Cd by Cu(II) at the codeposition stage is regarded as the main reason for the interference, and the corresponding suggestion for selecting suitable electrode materials to avoid such interference is also provided.

13.
J Strength Cond Res ; 28(10): 2872-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24714536

RESUMEN

The purpose of this study was to explore the immediate effects of different frequencies of whole-body vibration (WBV) on the performance of trunk muscles of healthy young adults. A group of 30 healthy subjects (15 men; 15 women; age, 26.8 ± 3.74 years; body mass index, 21.9 ± 1.802) participated in the study. Each subject received 3 sessions of vibration exercise with different exercise parameters with frequencies of 25 Hz and 40 Hz and sham stimulation in a random order on different days. Before and after each WBV exercise session, subjects were assessed for trunk muscle strength/endurance tests and trunk proprioception tests. There was a significant increase in trunk extensor strength (p ≤ 0.05) after low-frequency (25 Hz) WBV exercise, but high-frequency (40 Hz) vibration exercise had resulted in a significant decrease in trunk extensor endurance (p ≤ 0.05). Statistical gender difference (p = 0.04) was found for trunk extensor endurance with lower WBV training. No change was noted in the trunk proprioception with different frequencies of WBV. In conclusions, the immediate response of the body to WBV was different for low and high frequencies. Low-frequency vibration enhanced trunk extensor strength, but high-frequency vibration would decrease endurance of the trunk extensor muscles. Males are more sensitive than females in trunk extensor endurance for lower frequency WBV exposure. These results indicated that short-term WBV with low frequency was effective to improve trunk extensor strength in healthy adults, and that could be helpful for relevant activities of trunk extensor performing and preventing sport injury.


Asunto(s)
Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Vibración , Adulto , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Fuerza Muscular , Resistencia Física , Propiocepción , Distribución Aleatoria , Torso , Adulto Joven
14.
J Phys Ther Sci ; 26(7): 1133-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25140112

RESUMEN

[Purpose] The aim of the present study was to seek evidence for the effectiveness of Tai Chi for patients with knee osteoarthritis (KOA). [Subjects and Methods] Systematic searches were conducted of the China Journals Full-text Database, Pubmed, Medline, Science Direct-Online Journals and CINAHL for studies published between 2000 and 2012. Studies were evaluated based on following inclusion criteria: 1) design: randomized control, clinical trial; 2) subjects: patients with a knee osteoarthritis diagnosis; 3) intervention: exercise involving Tai Chi; 4) studies published in English or Chinese. [Results] Six randomized control studies involving Tai Chi and knee osteoarthritis were found. [Conclusion] Tai Chi was an effective way of relieving pain and improving physical function. Further randomized controlled trials with large sample sizes and long training period are needed to compare groups who perform Tai Chi training with other groups who undergo other forms of physical exercise in order to confirm the efficacy of Tai Chi.

15.
ACS Appl Mater Interfaces ; 16(22): 28391-28401, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38768515

RESUMEN

Vanadium oxide has been extensively studied as a host of zinc ion intercalation but still suffers from low conductivity, dissolution, and byproduct accumulation during cycling. Here, we hydrothermally synthesize the VO2@MXene Ti3C2 (MV) composite and find that in the MV//3 M Zn(CF3SO3)2//Zn system, the double hydroxide Zn12(CF3SO3)9(OH)15·nH2O (ZCOH) uniformly covers VO2 during the charging process and dissolves reversibly during the discharge process. In situ X-ray diffraction of the MV combined with in situ pH measurements reveals that ZCOH acts as a pH buffer during cycling, which is beneficial to the cycling stability of batteries. And the theoretical calculation indicates that the decomposition energy required by ZCOH on the MV surface is lower than that on pure VO2, which is more conducive to ZCOH dissolution. The coin battery exhibits high-rate performance of 65.1% capacity retention at a current density of 15 A g-1 (compared to 0.6 A g-1) and a long cycling life of 20,000 cycles with a capacity retention of 80.7%. For a 22.4 mA h soft-packaged battery, its capacity remains at 72.1% after 2000 cycles. This work demonstrates the active role of ZCOH in the electrochemical process of VO2 and provides a new perspective for exploiting this mechanism to develop high-performance aqueous zinc-ion battery vanadium oxide cathode materials.

16.
J Colloid Interface Sci ; 674: 527-536, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38943913

RESUMEN

Constructing unique heterostructures is a highly effective approach for enhancing the K+ storage capability of transition metal selenides. Such structures generate internal electric fields that significantly reduce the charge transfer activation energy. However, achieving a flawless interfacial region that maintains the optimal energy level gradient and degree of lattice matching remains a considerable challenge. In this study, we synthesised Setaria-like NiTe2/MoS2@C heterogeneous interfaces at which three-dimensional MoS2 nanosheets are evenly embedded in NiTe2 nanorods to form stabilised heterojunctions. The NiTe2/MoS2 heterojunctions display distinctive electronic configurations and several active sites owing to their low lattice misfits (δ = 13 %), strong electric fields, and uniform carbon shells. A NiTe2/MoS2@C anode in a potassium-ion battery (KIB) exhibited an impressive reversible capacity of 125.8 mAh/g after 1000 cycles at a rate of 500 mA g-1 and a stable reversible capacity of 111.7 mAh/g even after 3000 cycles at 1000 mA g-1. Even the NiTe2/MoS2@C//perylene tetracarboxylic dianhydride full battery configuration maintained a significant reversible capacity of 92.4 mAh/g after 100 cycles at 200 mA g-1, highlighting its considerable potential for application in KIBs. Calculations further revealed that the well-designed NiTe2/MoS2 heterojunction significantly promotes K+ ion diffusion.

17.
J Colloid Interface Sci ; 659: 21-30, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38157723

RESUMEN

Lithium metal is an attractive and promising anode material due to its high energy density and low working potential. However, the uncontrolled growth of lithium dendrites during repeated plating and stripping processes hinders the practical application of lithium metal batteries, leading to low Coulombic efficiency, poor lifespan, and safety concerns. In this study, we synthesized highly lithiophilic and conductive Ag nanoparticles decorated on SiO2 nanospheres to construct an optimized lithium host for promoting uniform Li deposition. The Ag nanoparticles not only act as lithiophilic sites but also provide high electrical conductivity to the Ag@SiO2@Ag anode. Additionally, the SiO2 layer serves as a lithiophilic nucleation agent, ensuring homogeneous lithium deposition and suppressing the growth of lithium dendrites. Theoretical calculations further confirm that the combination of Ag nanoparticles and SiO2 effectively enhances the adsorption ability of Ag@SiO2@Ag with Li+ ions compared to pure Ag and SiO2 materials. As a result, the Ag@SiO2@Ag coating, with its balanced lithiophilicity and conductivity, demonstrates excellent electrochemical performance, including high Coulombic efficiency, low polarization voltage, and long cycle life. In a full lithium metal cell with LiFePO4 cathode, the Ag@SiO2@Ag anode exhibits a high capacity of 133.1 and 121.4 mAh/g after 200 cycles at rates of 0.5 and 1C, respectively. These results highlight the synergistic coupling of lithiophilicity and conductivity in the Ag@SiO2@Ag coating, providing valuable insights into the field of lithiophilic chemistry and its potential for achieving high-performance batteries in the next generation.

18.
RSC Adv ; 14(3): 1813-1821, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38192308

RESUMEN

Carbon quantum dots (CQDs), as a new type of fluorescent nanomaterial, are widely used in the detection of small molecules. Abnormal dopamine secretion can lead to diseases such as Parkinson's disease and schizophrenia. Therefore, it is highly significant to detect dopamine levels in the human body. Using discarded fruit peels to prepare carbon quantum dots can achieve the reuse of kitchen waste, reduce pollution, and create value. Nitrogen-doped carbon quantum dots (N-CQDs) were prepared using the hydrothermal method, with orange peel as the raw material. The fluorescence quantum yield of N-CQDs reached a high value of 35.37% after optimizing the temperature, reaction time, and ethylenediamine dosage. N-CQDs were characterized using various techniques, including ultraviolet visible (UV-vis) spectroscopy, fluorescence spectrophotometer (PL), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). These analyses confirmed the successful doping of nitrogen in the CQDs. The DA concentration ranged from 0 to 300 µmol L-1, and the linear equation for fluorescence quenching of N-CQDs was F/F0 = -0.0056c + 0.98647, with an R2 value of 0.99071. The detection limit was 0.168 µmol L-1. The recovery and precision of dopamine in rabbit serum were 98% to 103% and 2% to 6%, respectively. The prepared N-CQDs could be used as a fluorescent probe to effectively detect DA.

19.
Front Cell Infect Microbiol ; 13: 1169500, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346031

RESUMEN

Kidney transplantation is an effective method to improve the condition of patients with end-stage renal disease. The gut microbiota significantly affects the immune system and can be used as an influencing factor to change the prognoses of patients who have undergone kidney transplantation. Recipients after kidney transplantation showed a lower abundance of Firmicutes and Faecalibacterium prausnitzii and a higher proportion of Bacteroidetes and Proteobacteria. After using prebiotics, synbiotics, and fecal microbiota transplantation to regulate the microbial community, the prognoses of patients who underwent kidney transplantation evidently improved. We aimed to determine the relationship between gut microbiota and various postoperative complications inpatients who have undergone kidney transplantation in recent years and to explore how gut microecology affects post-transplant complications. An in-depth understanding of the specific functions of gut microbiota and identification of the actual pathogenic flora during complications in patients undergoing kidney transplantation can help physicians develop strategies to restore the normal intestinal microbiome of transplant patients to maximize their survival and improve their quality of life.


Asunto(s)
Microbioma Gastrointestinal , Trasplante de Riñón , Microbiota , Humanos , Trasplante de Riñón/efectos adversos , Microbioma Gastrointestinal/fisiología , Calidad de Vida , Trasplante de Microbiota Fecal
20.
World J Clin Cases ; 11(21): 5063-5072, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37583861

RESUMEN

BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic, traditional teaching methods were disrupted and online teaching became a new topic in education reform and informatization. In this context, it is important to investigate the necessity and effectiveness of online teaching methods for medical students. This study explored stomatology education in China to evaluate the development and challenges facing the field using massive open online courses (MOOCs) for oral medicine education during the pandemic. AIM: To investigate the current situation and challenges facing stomatology education in China, and to assess the necessity and effectiveness of online teaching methods among medical students. METHODS: Online courses were developed and offered on personal computers and mobile terminals. Behavioral analysis and formative assessments were conducted to evaluate the learning status of students. RESULTS: The results showed that most learners had already completed MOOCs and achieved better results. Course behavior analysis and student surveys indicated that students enjoyed the learning experience. However, the development of oral MOOCs during the COVID-19 pandemic faced significant challenges. CONCLUSION: This study provides insights into the potential of using MOOCs to support online professional learning and future teaching innovation, but emphasizes the need for careful design and positive feedback to ensure their success.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA