Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Angew Chem Int Ed Engl ; 62(35): e202300379, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-36828775

RESUMEN

Understanding the intricate molecular machinery that governs ferroptosis and leveraging this accumulating knowledge could facilitate disease prevention, diagnosis, treatment, and prognosis. Emerging approaches for the in situ detection of the major regulators and biological events across cellular, tissue, and in living subjects provide a multiscale perspective for studying ferroptosis. Furthermore, advanced applications that integrate ferroptosis detection and the latest technologies hold tremendous promise in ferroptosis research. In this review, we first briefly summarize the mechanisms and key regulators underlying ferroptosis. Ferroptosis detection approaches are then presented to delineate their design, mechanisms of action, and applications. Special interest is placed on advanced ferroptosis applications that integrate multifunctional platforms. Finally, we discuss the prospects and challenges of ferroptosis detection approaches and applications, with the aim of providing a roadmap for the theranostic development of a broad range of ferroptosis-related diseases.


Asunto(s)
Ferroptosis , Humanos
2.
ACS Nano ; 18(11): 8337-8349, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38437640

RESUMEN

The combination of anti-rheumatoid arthritis (RA) drugs methotrexate (MTX) and baricitinib (BTN) has been reported to improve RA treatment efficacy. However, study on the strategy of combination is elusive when considering the benefit of the synergy between MTX and BTN. In this study, we found that the N-heterocyclic rings in the MTX and BTN offer hydrogen bonds and π-π stacking interactions, driving the formation of exquisite vesicular morphology of nanovesicles, denoted as MB NVs. The MB NVs with the MTX/BTN weight ratio of 2:1, MB NVs (2:1), showed an improved anti-RA effect through the synergy between the anti-inflammatory and antiproliferative responses. This work presents that the intermolecular interactions between drug molecules could mediate the coassembly behavior into nanomedicine as well as the therapy synergy both in vitro and in vivo, which may provide further understanding on the rational design of combination nanomedicine for therapeutic purposes.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Azetidinas , Purinas , Pirazoles , Sulfonamidas , Humanos , Metotrexato/farmacología , Metotrexato/uso terapéutico , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Nanomedicina , Artritis Reumatoide/tratamiento farmacológico , Resultado del Tratamiento , Quimioterapia Combinada
3.
ACS Nano ; 18(17): 11200-11216, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38620102

RESUMEN

Intranasal vaccines, eliciting mucosal immune responses, can prevent early invasion, replication, and transmission of pathogens in the respiratory tract. However, the effective delivery of antigens through the nasal barrier and boosting of a robust systematic and mucosal immune remain challenges in intranasal vaccine development. Here, we describe an intranasally administered self-healing hydrogel vaccine with a reversible strain-dependent sol-gel transition by precisely modulating the self-assembly processes between the natural drug rhein and aluminum ions. The highly bioadhesive hydrogel vaccine enhances antigen stability and prolongs residence time in the nasal cavity and lungs by confining the antigen to the surface of the nasal mucosa, acting as a "mucosal mask". The hydrogel also stimulates superior immunoenhancing properties, including antigen internalization, cross-presentation, and dendritic cell maturation. Furthermore, the formulation recruits immunocytes to the nasal mucosa and nasal-associated lymphoid tissue (NALT) while enhancing antigen-specific humoral, cellular, and mucosal immune responses. Our findings present a promising strategy for preparing intranasal vaccines for infectious diseases or cancer.


Asunto(s)
Administración Intranasal , Hidrogeles , Inmunidad Mucosa , Mucosa Nasal , Animales , Hidrogeles/química , Ratones , Inmunidad Mucosa/efectos de los fármacos , Mucosa Nasal/inmunología , Ratones Endogámicos BALB C , Femenino , Humanos , Ratones Endogámicos C57BL
4.
ACS Nano ; 17(24): 24854-24866, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38047965

RESUMEN

Macrophages play a crucial role in immune activation and provide great value in the prognosis of cancer treatments. Current strategies for prognostic evaluation of macrophages mainly target the specific biomarkers to reveal the number and distribution of macrophages in the tumors, whereas the phenotypic change of M1 and M2 macrophages in situ is less understood. Here, we designed an ultrasmall superparamagnetic iron oxide nanoparticle-based molecular imaging nanoprobe to quantify the repolarization of M2 to M1 macrophages by magnetic resonance imaging (MRI) using the redox-active nitric oxide (NO) as a vivid chemical target. The nanoprobe equipped with O-phenylenediamine groups could react with the intracellular NO molecules during the repolarization of M2 macrophages to the M1 phenotype, leading to electrical attraction and colloidal aggregation of the nanoprobes. Consequently, the prominent changes of the T1 and T2 relaxation in MRI allow for the quantification of the macrophage polarization. In a 4T1 breast cancer model, the MRI nanoprobe was able to reveal macrophage polarization and predict treatment efficiency in both immunotherapy and radiotherapy paradigms. This study presents a noninvasive approach to monitor the phenotypic changes of M2 to M1 macrophages in the tumors, providing insight into the prognostic evaluation of cancer treatments regarding macrophage-mediated immune responses.


Asunto(s)
Neoplasias , Óxido Nítrico , Humanos , Macrófagos , Pronóstico , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Neoplasias/patología , Imagen por Resonancia Magnética
5.
Redox Biol ; 52: 102321, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35500533

RESUMEN

Arsenic (As) contamination in drinking water is a global public health problem. Epidemiological studies have shown that selenium (Se) deficiency is associated with an increasing risk of arsenism. However, the association between Se status and As retention in erythrocytes and mechanisms underlying this association have not been fully investigated. In the present study, a total of 165 eligible subjects were recruited and As was found to accumulate in blood mainly by retention in erythrocytes. Retention of As in erythrocytes was negatively correlated with Se status, antioxidant parameters related to Se and As methylation capacity, but positively correlated with the protein-binding capacity of As. Additionally, erythrocytes isolated from subjects with low Se status exhibited cellular damage along with lower protein levels of CD47, which could be aggravated by hydrogen peroxide treatment. Consistent with the human study, the erythrocytes from mice with sub-chronic As exposure exhibited similar cellular damage and shown to be phagocytosed by splenic macrophages, and these effects were mitigated by dietary Se supplementation. Furthermore, hydrogen peroxide treatment induced excessive phagocytosis of erythrocytes with As exposure by splenic macrophages, while co-treating erythrocytes with the reducing agent, N-Acetyl-l-cysteine, mitigated this excessive erythrophagocytosis. Hyperactivation of the NFκB pathway was also detected in splenic macrophages after excessive erythrophagocytosis. In conclusion, this study found that low Se status involving impaired redox homeostasis increased As retention in erythrocytes, which were subsequently phagocytosed by splenic macrophages and led to an increased inflammatory status of splenic macrophages. These findings provide insight into physiological features of arsenism related to Se status and redox homeostasis.


Asunto(s)
Arsénico , Selenio , Animales , Arsénico/metabolismo , Arsénico/toxicidad , Eritrocitos/metabolismo , Homeostasis , Humanos , Peróxido de Hidrógeno/metabolismo , Ratones , Oxidación-Reducción , Selenio/metabolismo , Selenio/farmacología
6.
Parkinsonism Relat Disord ; 21(3): 300-2, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25534083

RESUMEN

INTRODUCTION: GWAS meta-analysis identified RIT2 rs12456492 and STX1B rs4889603 as PD susceptible loci. While proteins encoded by the genes, in particular RIT2, may involve in PD pathogenesis, the association of these two variants with PD remains to be further clarified. METHODS: We enrolled a Chinese cohort comprising 537 PD patients and 517 controls, determined the genotypes of rs12456492 and rs4889603, and analyzed these variants in relation to PD. RESULTS: Both rs12456492 and rs4889603 were associated with PD susceptibility (P = 0.012 and 0.03, respectively). The G allele of rs12456492 and the A allele of rs4889603 served as risk alleles toward PD. Statistical differences in genotype distribution between the patients and controls were observed both in rs12456492 (marginal, P = 0.042 for GG vs. AG vs. AA) and in rs4889603 (P = 0.021 for AA + AG vs. GG) CONCLUSION: Our data suggest that the RIT2 and STX1B polymorphisms are associated with PD etiology. The role of RIT2 in PD pathogenesis warrants further mechanistical investigation.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Proteínas de Unión al GTP Monoméricas/genética , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple/genética , Sintaxina 1/genética , Anciano , Pueblo Asiatico , Estudios de Cohortes , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA