Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257269

RESUMEN

Glycerol is a main by-product of biodiesel production, and its further processing is essential for the biorefinery. In this paper, a highly active and stable catalyst for the catalytic dehydration of glycerol to acetol is obtained by modifying a Cu-Zr (ZrO2 supported Cu) catalyst with Y2O3 using a co-precipitation method. It is found that the addition of Y2O3 effectively enhances the catalytic performance of Cu-Zr. Cu-Zr reaches the highest selectivity (82.4%) to acetol at 24 h. However, the selectivity decreases to 70.1% at 36 h. The conversion also decreases from 99.2 to 91.1%. Cu-Zr-Y exhibits very high activity and very good stability. During a 250 h reaction, no deactivation is observed, and the conversion and selectivity remains ~100% and ~85%, respectively. The catalysts are characterized by XRD, TEM, H2-TPR, and NH3-TPD. The results reveal that Y2O3 not only improves the dispersion of Cu and the acidity of the catalyst but also restrains the agglomeration of Cu particles and assists retaining the main structure of support under reaction conditions. The high dispersion, high acidity content, and stable structure contributes to the excellent catalytic performance of Cu-Zr-Y.

2.
J Hazard Mater ; 426: 128088, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34959211

RESUMEN

Phenol is one of the major hazardous organic compounds in industrial wastewater. In this work, a highly active Pt/TiO2 catalyst for catalytic wet air oxidation (CWAO) of phenol was obtained by supporting pre-synthesized Pt on TiO2. During the followed hydrogen reduction, strong hydrogen spillover occurred without the migration of TiO2 onto Pt. The reduced support then enhanced the electron transfer from TiO2 to Pt, increasing the percentage of partially negative Pt (Ptδ-), which has been confirmed by XPS. The strong EMSI made the obtained catalyst far more active than Pt/TiO2 prepared by impregnation method. The electron-enriched Pt/TiO2 achieved total organic carbon (TOC) conversion of 88.8% and TOF 149 h-1 at 100 °C and 2 MPa O2, while conventional Pt/TiO2 gave TOC conversion of 39.5% and TOF 41 h-1 for CWAO of phenol. Our work indicates that the enhancement of EMSI between metal and support can be an effective approach to develop highly active catalysts for phenol treatment.

3.
ACS Omega ; 4(7): 12598-12605, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31460380

RESUMEN

Pt(NH3)4(NO3)2, Pt(NH3)4(Ac)2, (NH4)2PtCl4, and H2PtCl6 were used to prepare Pt/SAPO-11 catalysts to investigate the effect of Pt precursors on the hydroisomerization of n-dodecane. The catalyst derived from Pt(NH3)4(NO3)2 displays the best hydroisomerization activity and selectivity among these precursors. The hydroisomerization conversion of n-dodecane is affected by the platinum particle size, platinum dispersion, the location of platinum, and the valence state of platinum. The selectivity of n-dodecane is determined by the number of Brønsted acid sites and Pt crystal planes. These conclusions are verified by combining transmission electron microscopy, high-resolution transmission electron microscopy, hydrogen temperature programmed reduction, NH3-temperature programmed desorption, and Py-IR studies. The catalyst prepared with Pt(NH3)4(NO3)2 as the precursor exhibits the smallest platinum particle size and the highest platinum dispersion. Most of the platinum particles are supported on the external surface of SAPO-11 with the Pt(111) crystal face. Such a catalyst also possesses a suitable number of Brønsted acid sites and then displays the best catalytic performance. Obviously, the use of various precursors for the Pt-based catalyst can significantly affect the performance of Pt/SAPO-11 for the hydroisomerization of n-dodecane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA