Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Poult Sci ; 88(2): 309-15, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19151345

RESUMEN

Bacillus subtilis var. natto N21 (Bac; for greater proteolytic capacity) and Saccharomyces cerevisiae Y10 (Sac; for greater acidic capacity) were applied to produce a 2-stage combined fermentation feed. This study investigated whether the enhancement of Bac+Sac fermented feed on broiler growth performance was due to the probiotics per se or due to the fermentation process. Trial 1 included 1-d-old broiler chicks (n=144) randomly assigned to control, water added (same as in the fermentation feed, 23%), and Bac+Sac fermented feed (FBac+Sac) treatments with 4 replicates. Trial 2 included 21-d-old broiler chickens (n=12) assigned into control and FBac+Sac groups for a metabolic trial for nutrient availability. Trial 3 included 1-d-old male broiler chicks (n=216) randomly assigned into 6 treatments with 3 replicates. Treatments included a control, Sac fermented feed (FSac), FBac+Sac, Bac powder (PBac), Sac powder (PSac), and Bac+Sac powder (PBac+Sac). The results from trial 1 showed that FBac+Sac increased BW and feed intake (P<0.05) in 21- and 39-d-old chickens. The water-added group showed decreased BW, weight gain, and feed intake (P<0.05). Trial 2 showed that FBac+ Sac increased gross energy availability (P<0.05). Trial 3 showed that FBac+Sac increased 21- and 39-d-old BW and weight gain (P<0.05). Diets supplemented with probiotic powder or fermented with Sac did not improve broiler growth performance (P>0.05). The growth performance improvement of the FBac+Sac treatment was probably not due to the added water, probiotic powder inclusion, or through single-strain fermentation, but due to the 2-stage fermentation process using Bac and Sac strains.


Asunto(s)
Alimentación Animal/microbiología , Bacillus subtilis , Pollos/crecimiento & desarrollo , Dieta/veterinaria , Fermentación , Saccharomyces cerevisiae , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Pollos/metabolismo , Contenido Digestivo/química , Contenido Digestivo/microbiología , Intestinos/citología , Intestinos/enzimología , Masculino , Distribución Aleatoria
2.
J Biol Chem ; 276(15): 12235-40, 2001 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-11278862

RESUMEN

A wide variety of proteins have been shown to recognize and bind to specific amino acid sequences on other proteins. These sequences can be readily identified using combinatorial peptide libraries. However, peptides containing these preferred sequences ("consensus sequence peptides") typically display only modest affinities for the consensus sequence-binding site on the intact protein. In this report, we describe a parallel synthesis strategy that transforms consensus sequence peptides into high affinity ligands. The work described herein has focused on the Lck SH2 domain, which binds the consensus peptide acetyl-Tyr(P)-Glu-Glu-Ile-amide with a K(D) of 1.3 micrometer. We employed a strategy that creates a series of spatially focused libraries that challenge specific subsites on the target protein with a diverse array of functionality. The final lead compound identified in this study displayed a 3300-fold higher affinity for the Lck SH2 domain than the starting consensus sequence peptide.


Asunto(s)
Secuencia de Consenso , Péptidos/química , Secuencia de Aminoácidos , Ligandos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/química , Resonancia Magnética Nuclear Biomolecular , Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA