Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Molecules ; 28(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37513240

RESUMEN

Medicinal plant extracts are a promising source of bioactive minor contents. The present study aimed to evaluate the distinguished volatile content of Algerian Cymbopogon citratus (DC.) Stapf before and after the microfluidization process and their related antimicrobial and anti-mycotoxigenic impacts and changes. The GC-MS apparatus was utilized for a comparative examination of Algerian lemongrass essential oil (LGEO) with its microfluidization nanoemulsion (MF-LGEO) volatile content. The MF-LGEO was characterized using Zetasizer and an electron microscope. Cytotoxicity, antibacterial, and antifungal activities were determined for the LGEO and MF-LGEO. The result reflected changes in the content of volatiles for the MF-LGEO. The microfluidizing process enhanced the presence of compounds known for their exceptional antifungal and antibacterial properties in MF-LGEO, namely, neral, geranial, and carvacrol. However, certain terpenes, such as camphor and citronellal, were absent, while decanal, not found in the raw LGEO, was detected. The droplet diameter was 20.76 ± 0.36 nm, and the polydispersity index (PDI) was 0.179 ± 0.03. In cytotoxicity studies, LGEO showed higher activity against the HepG2 cell line than MF-LGEO. Antibacterial LGEO activity against Gram-positive bacteria recorded an inhibitory zone from 41.82 ± 2.84 mm to 58.74 ± 2.64 mm, while the zone ranged from 12.71 ± 1.38 mm to 16.54 ± 1.42 mm for Gram-negative bacteria. Antibacterial activity was enhanced to be up to 71.43 ± 2.54 nm and 31.54 ± 1.01 nm for MF-LGEO impact against Gram-positive and Gram-negative pathogens. The antifungal effect was considerable, particularly against Fusarium fungi. It reached 17.56 ± 1.01 mm and 13.04 ± 1.37 mm for LGEO and MF-LGEO application of a well-diffusion assay, respectively. The MF-LGEO was more promising in reducing mycotoxin production in simulated fungal growth media due to the changes linked to essential compounds content. The reduction ratio was 54.3% and 74.57% for total aflatoxins (AFs) and ochratoxin A (OCA) contents, respectively. These results reflect the microfluidizing improvement impact regarding the LGEO antibacterial, antifungal and anti-mycotoxigenic properties.


Asunto(s)
Antiinfecciosos , Cymbopogon , Aceites Volátiles , Antifúngicos/farmacología , Antiinfecciosos/farmacología , Aceites Volátiles/farmacología , Antibacterianos/farmacología
2.
Molecules ; 26(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34885955

RESUMEN

Rosemary (Rosmarinus officinalis) and basil (Ocimum sanctum Linn) are mostly used as herbal teas, made by steeping whole or ground herbs in boiling water. Hence, it is important to know the effect of boiling time on the bioactivity of these herbs. The effect of different boiling times (5, 10, and 15 min) on the antioxidant and antimicrobial properties, and some selected phenolic compounds of these herbs was examined in this study. Experimental results revealed that basil displayed the highest total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant activity when it was boiled for 5 min, and the lowest TPC was obtained when it was boiled for 15 min. On the other hand, rosemary had the highest TPC, TFC, and antioxidant potential after being boiled for 15 min, while it had the lowest after being boiled for 5 min. There was no growth inhibition of rosemary extracts against gram-negative bacteria, whereas higher growth inhibition was observed against gram-positive bacteria. The MIC and MBC of rosemary ethanolic extract against Listeria monocytogenes were 5 and 5 mg/mL and against B. subtilis were 10 and 10 mg/mL, respectively. While MIC and MBC of methanolic extract against L. monocytogenes were 5 and 5 mg/mL and against Bacillus subtilis were and 5 and 5 mg/mL, respectively. Salicylic acid was the most abundant (324.7 mg/100 g dry weight (dw)) phenolic compound in the rosemary sample boiled for 5 min, and acetyl salicylic acid was the most abundant (122.61 mg/10 g dw) phenolic compound in the basil sample boiled for 15 min.


Asunto(s)
Antiinfecciosos/química , Ocimum basilicum/química , Rosmarinus/química , Tés de Hierbas , Antiinfecciosos/farmacología , Flavonoides/química , Flavonoides/farmacología , Manipulación de Alimentos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Calor , Plantas Medicinales/química , Polifenoles/química , Polifenoles/farmacología , Tés de Hierbas/análisis
3.
J Dairy Sci ; 103(7): 5947-5963, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32359985

RESUMEN

Staphylococcus aureus is a significant opportunistic pathogen in humans, dairy cattle, and camels. The presence of antibiotic-resistant and heat-resistant bacteria in camel milk has become a potential public health issue. The phenotypic and molecular characterization of methicillin-resistant staphylococcal strains recovered from pasteurized camel milk distributed in retail markets of Saudi Arabia was assessed. A total of 100 samples were collected between March and May 2017. Out of the 20 S. aureus isolates that were recovered from the pasteurized camel milk, 10 were found to be resistant to cefoxitin (30 µg) and, thus, were designated as methicillin-resistant strains. The resistance ratio of methicillin-resistant S. aureus isolates for a different class of antibiotics was determined by performing the antimicrobial susceptibility test and was estimated to be approximately 60%. Polymerase chain reaction assay was performed to amplify the methicillin-resistant gene mecA, and furthermore, nucleotide sequencing was performed to detect and verify the presence of methicillin-resistant strains. Upon sequencing the putative S. aureus methicillin-resistant strains, we obtained 96 to 100% similarity to the penicillin-binding protein 2a gene (mecA) of the S. aureus strain CS100. Moreover, the 10 methicillin-resistant S. aureus isolates were also identified to be heat resistant and were stable at temperatures up to 85°C for 60 s, with 3 isolates being heat resistant even at 90°C for 60 or 90 s. The mean decimal reduction time (D85 value) was 111 s for all the 10 isolates. No difference was observed in the profile of total protein between the 10 methicillin- and heat-resistant S. aureus isolates and the S. aureus strain ATCC 29737, which was determined by sodium dodecyl sulfate-PAGE analyses. Therefore, we could conclude that a relatively high percentage of the tested pasteurized camel milk samples were contaminated with S. aureus (20%) and methicillin- and heat-resistant S. aureus (10%).


Asunto(s)
Proteínas Bacterianas/genética , Camelus/microbiología , Resistencia a la Meticilina , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Leche/microbiología , Proteínas de Unión a las Penicilinas/genética , Animales , Antibacterianos/farmacología , Cefoxitina/farmacología , Femenino , Calor , Meticilina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/fisiología , Arabia Saudita , Termotolerancia
4.
BMC Complement Altern Med ; 19(1): 3, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30606163

RESUMEN

BACKGROUND: Considerable morbidity, mortality, and economic loss result from schistosomiasis infection. Deposition of Schistosoma eggs in the hepatic portal vein is considered as the main causative agent for the development of liver fibrosis and subsequent liver cirrhosis. Probiotics are exogenous and beneficial microorganisms to living hosts against the harmful effect of many parasites. Strong evidence suggests the importance of probiotics in the control strategy of helminth. The ultimate goal of this study is to evaluate the protective effect of probiotics and yogurt on Schistosoma mansoni-induced oxidative stress and hepatic fibrosis in mice. METHODS: Mice were infected by tail immersion of schistosomal cercariae followed by an oral treatment with either probiotics or yogurt for one week before infection and immediately post-infection. Mice were scarified on day 56 following infection with S. mansoni and liver sample were obtained. RESULTS: We showed that oral administration of probiotics or yogurt revealed a significant reduction in worm number, egg load, and granuloma size in liver tissue, which is mainly assigned to the decreased expression level of matrix metalloproteinases 9 (MMP-9) in liver tissue. A significant reduction in the oxidative stress markers-induced by S. mansoni infection including lipid peroxidation and nitrite/nitrate was also detected. The level of some antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase) and reduced glutathione was greatly enhanced. Furthermore, treatment with probiotics or yogurt inhibited apoptosis in hepatic tissue, which is mainly assigned to the decreased expression level of caspases-3 in liver tissue. CONCLUSION: Our findings represent the promising anti-schistosomal activities of probiotics and yogurt.


Asunto(s)
Interacciones Huésped-Parásitos/efectos de los fármacos , Cirrosis Hepática/metabolismo , Estrés Oxidativo/efectos de los fármacos , Probióticos/farmacología , Esquistosomiasis mansoni/metabolismo , Yogur , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/parasitología , Hígado/patología , Cirrosis Hepática/parasitología , Masculino , Ratones , Schistosoma mansoni/efectos de los fármacos , Esquistosomiasis mansoni/parasitología
5.
Cell Physiol Biochem ; 45(3): 1072-1083, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29439258

RESUMEN

BACKGROUND/AIMS: Stem cell based therapies are being under focus due to their possible role in treatment of various tumors. Bone marrow stem cells believed to have anticancer potential and are preferred for their activities by stimulating the immune system, migration to the site of tumor and ability for inducting apoptosis in cancer cells. The current study was aimed to investigate the tumor suppressive effects of bone marrow cells (BMCs) in 1,2-dimethylhydrazine (DMH)-induced colon cancer in rats. METHODS: The rats were randomly allocated into four groups: control, BMCs alone, DMH alone and BMCs with DMH. BMCs were injected intrarectally while DMH was injected subcutaneously at 20 mg/kg body weight once a week for 15 weeks. Histopathological examination and gene expression of survivin, ß-catenin and multidrug resistance-1 (MDR-1) by real-time reverse transcription-polymerase chain reaction (RT-PCR) in rat colon tissues. This is in addition to oxidative stress markers in colon were performed across all groups. RESULTS: The presence of aberrant crypt foci was reordered once histopathological examination of colon tissue from rats which received DMH alone. Administration of BMCs into rats starting from zero-day of DMH injection improved the histopathological picture which showed a clear improvement in mucosal layer, few inflammatory cells infiltration periglandular and in the lamina propria. Gene expression in rat colon tissue demonstrated that BMCs down-regulated survivin, ß-catenin, MDR-1 and cytokeratin 20 genes expression in colon tissues after colon cancer induction. Amelioration of the colon status after administration of MSCs has been evidenced by a major reduction of lipid peroxidation, nitric oxide, and increasing of glutathione content and superoxide dismutase along with catalase activities. CONCLUSION: Our findings demonstrated that BMCs have tumor suppressive effects in DMH-induced colon cancer as evidenced by down-regulation of survivin, ß-catenin, and MDR-1 genes and enhancing the antioxidant activity.


Asunto(s)
Trasplante de Médula Ósea , Neoplasias del Colon/terapia , 1,2-Dimetilhidrazina/toxicidad , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Focos de Criptas Aberrantes/patología , Animales , Células de la Médula Ósea/citología , Catalasa/metabolismo , Colon/metabolismo , Colon/patología , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/patología , Regulación hacia Abajo , Glutatión/metabolismo , Peroxidación de Lípido , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Survivin , beta Catenina/genética , beta Catenina/metabolismo
6.
Food Microbiol ; 69: 11-17, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28941891

RESUMEN

The antimicrobial effect of citrus extract (at 1 mL/kg [C1] and 2 mL/kg [C2]) on naturally occurring microbiota and inoculated pathogens (E. coli O157:H7 and L. monocytogenes at ca. 6 log cfu/g) in the traditional Greek yogurt-based salad Tzatziki stored at 4, 10, or 21 °C, was examined. Lactic acid bacteria (LAB) were high (8.0-8.5 log cfu/g) and varied only minimally for both the control (untreated) and the citrus extract-treated salad samples, whereas the higher citrus extract concentration yielded the lowest yeast populations, irrespective of temperature, during the entire storage period. Populations of inoculated E. coli (6 log cfu/g) declined in both untreated and citrus extract-treated samples from day 0-70, 35, and 15 at 4, 10, and 21 °C, respectively. Citrus extract had a significant effect on the survival of the inoculated E. coli O157:H7, with reductions of 2.8-4.8 log cfu/g in the citrus extract-treated samples at the end of the storage period. Our data show that L. monocytogenes survived in both untreated and citrus extract-treated samples during the entire storage period, irrespective of the storage temperature. The higher concentration of citrus extract had a significant effect on the survival of L. monocytogenes in the treated samples, and reductions of 1.5-3.0 logs were noted on final day 70, 35 and 15 at 4, 10 and 21 °C, respectively. The results of our study demonstrated the potential of citrus extract as a natural compound that can control the growth of food-borne pathogenic bacteria, such as E. coli O157:H7 and L. monocytogenes in Tzatziki, a yogurt-based salad.


Asunto(s)
Citrus/química , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/crecimiento & desarrollo , Contaminación de Alimentos/prevención & control , Listeria monocytogenes/efectos de los fármacos , Extractos Vegetales/farmacología , Verduras/microbiología , Yogur/microbiología , Escherichia coli O157/aislamiento & purificación , Contaminación de Alimentos/análisis , Almacenamiento de Alimentos , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/aislamiento & purificación , Viabilidad Microbiana/efectos de los fármacos , Temperatura
7.
Food Microbiol ; 62: 153-159, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27889143

RESUMEN

This study explores the effects of chitosan and natamycin on the quality of fresh "Phyllo" - a dough-based wheat product, by monitoring the microbiological, physicochemical and sensory parameters. Four different lots of phyllo samples stored under aerobic packaging conditions, in the absence or presence of the aforementioned antimicrobials, were prepared and stored at 4 °C. Microbiological data suggested that, the combination of chitosan and natamycin resulted in significant reductions (1-3 log cfu/g) of the microbial species examined (mesophilic total viable counts; TVC), yeasts/molds, psychrotrophic and lactic acid bacteria (LAB), Enterobacteriaceae and coliforms) by day 10. The pH values of treated phyllo samples were lower on final day 10, as compared to the untreated phyllo, and of the Hunter color parameters (L*, b* and a*) that were evaluated, mostly the combined treatment of chitosan and natamycin maintained the original lightness (L*) and color (yellowness) stability (b*) of phyllo product during the storage period. Sensory data, based on overall acceptability (mean values of appearance and odor) scores confirmed the superiority of combined treatment of chitosan and natamycin, resulting in almost a doubling of the shelf-life of fresh phyllo, while retaining excellent sensorial characteristics (appearance and odor) even on final storage day (10).


Asunto(s)
Antibacterianos/farmacología , Quitosano/farmacología , Conservación de Alimentos/métodos , Almacenamiento de Alimentos/normas , Natamicina/farmacología , Triticum/microbiología , Frío , Recuento de Colonia Microbiana , Culinaria , Enterobacteriaceae/efectos de los fármacos , Embalaje de Alimentos , Calidad de los Alimentos , Almacenamiento de Alimentos/métodos , Concentración de Iones de Hidrógeno , Lactobacillaceae/efectos de los fármacos , Odorantes , Triticum/química , Levaduras/efectos de los fármacos
8.
Food Microbiol ; 58: 128-34, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27217368

RESUMEN

In this study, we examined the antimicrobial effects of citrus extract (Citrox(®)) and chitosan on lactic acid bacteria (LAB) and the pathogens Escherichia coli O157:H7 and Salmonella enterica on turkey meat during storage under vacuum packaging (VP) at 4 and 10 °C. We also examined the effects of Citrox and chitosan on pathogen contamination in tryptic soy broth (TSB). Chitosan alone or in combination with Citrox inhibited the growth of endogenous LAB in turkey meat, whereas citrus extract did not cause a major reduction in bacterial density. Citrus extract combined with chitosan yielded the lowest mesophilic total viable counts (TVCs), irrespective of temperature, showing major declines in all treated turkey samples from days 0-21 of storage. The shelf-lives of untreated, Citrox-treated, and chitosan and Citrox/chitosan-treated samples (as determined by TVC and sensory data) were 13, 17, and >21 days, respectively, at 4 °C for VP turkey. The addition of Citrox was more effective against S. enterica than E. coli in turkey, causing reductions of >0.5 and 2 log cfu/g at 4 and 10 °C, respectively, after 21 days of storage. Interestingly, the addition of chitosan had a significant inhibitory effect on E. coli at 4 °C and S. enterica at 10 °C as compared with the control (inoculated samples) resulting in dramatic reductions in E. coli (2 log) and S. enterica (5 log) cell counts on day 21. Of all the treatments examined, citrus extract in combination with chitosan showed an additive inhibitory effect against both pathogens, reducing E. coli and S. enterica populations, by approximately 2.7 or 4.5 and 2.2 or 5.6 log cfu/g, respectively, at 4 and 10 °C on day 21 of storage.


Asunto(s)
Quitosano/farmacología , Citrus/química , Escherichia coli O157/efectos de los fármacos , Microbiología de Alimentos , Extractos Vegetales/farmacología , Aves de Corral/microbiología , Salmonella enterica/efectos de los fármacos , Animales , Frío , Recuento de Colonia Microbiana , Seguridad de Productos para el Consumidor , Escherichia coli O157/crecimiento & desarrollo , Contaminación de Alimentos , Conservación de Alimentos , Almacenamiento de Alimentos , Humanos , Extractos Vegetales/química , Salmonella enterica/crecimiento & desarrollo , Pavos , Vacio , Zoonosis
9.
BMC Microbiol ; 15: 178, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26369334

RESUMEN

BACKGROUND: Recently many efforts are being carried out to reduce cholesterol in foods. Out of the 50 selected isolates that were tested using the agar well diffusion method to assess their ability to decompose cholesterol, 24 bacterial isolates were screened based on their cholesterol-decomposition ability in liquid media. RESULTS: The bacterial isolate that displayed the highest cholesterol oxidase activity was identified as Enterococcus hirae. The maximal growth and cholesterol decomposition were achieved with a 1-day incubation under static conditions at 37 °C in cholesterol basal medium adjusted to pH 7 supplemented with 1 g/l cholesterol as the substrate, no additional carbon or nitrogen sources and 0.5 % CaSO4. The cholesterol oxidase enzyme (ChoX) produced by E. hirae was extracted at an (NH4)2SO4 saturation level of 80 % and purified with 79 % yield, resulting in 2.3-fold purification. The molecular weight of (ChoX) was 60 kDa. The optimal conditions required for the maximal activity of the purified COD enzyme produced by E. hirae were 30 min, 40 °C, pH 7.8, substrate concentration of 1 g/l and 200 ppm of MgCl2. The enzyme maintained approximately 36 % and 58.5 % of its activity after 18 days of storage at 4-8 °C. Also, the enzyme loss its activity by gradual thermal treatment, but it maintained 58.5 % of its activity at 95 °C for 2 hr. CONCLUSIONS: E. hirae Mil-31 isolated from milk had a great capacity to decompose cholesterol in basal medium supplemented with cholesterol under its optimal growth conditions. Decomposition process of cholesterol by this strain results from its production of cholesterol oxidase enzyme (ChoX). The highest specific enzyme activity and highest purification fold of purified enzyme were achieved after using Sephadex G-100.


Asunto(s)
Colesterol Oxidasa/aislamiento & purificación , Colesterol Oxidasa/metabolismo , Colesterol/metabolismo , Enterococcus/enzimología , Animales , Sulfato de Calcio/metabolismo , Carbono/metabolismo , Colesterol Oxidasa/química , Medios de Cultivo/química , Enterococcus/crecimiento & desarrollo , Enterococcus/aislamiento & purificación , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Leche/microbiología , Peso Molecular , Nitrógeno/metabolismo , Temperatura
10.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256936

RESUMEN

Trees of the Annona species that grow in the tropics and subtropics contain compounds that are highly valuable for pharmacological research and medication development and have anticancer, antioxidant, and migratory properties. Metabolomics was used to functionally characterize natural products and to distinguish differences between varieties. Natural products are therefore bioactive-marked and highly respected in the field of drug innovation. Our study aimed to evaluate the interrelationships among six Annona species. By utilizing six Start Codon Targeted (SCoT) and six Inter Simple Sequence Repeat (ISSR) primers for DNA fingerprinting, we discovered polymorphism percentages of 45.16 and 35.29%, respectively. The comparison of the profiles of 78 distinct volatile oil compounds in six Annona species was accomplished through the utilization of GC-MS-based plant metabolomics. Additionally, the differentiation process of 74 characterized alkaloid compound metabolomics was conducted through a structural analysis using HPLC-ESI-MSn and UPLC-HESI-MS/MS, and antiproliferative activities were assessed on five in vitro cell lines. High-throughput, low-sensitivity LC/MS-based metabolomics has facilitated comprehensive examinations of alterations in secondary metabolites through the utilization of bioassay-guided differentiation processes. This has been accomplished by employing twenty-four extracts derived from six distinct Annona species, which were subjected to in vitro evaluation. The primary objective of this evaluation was to investigate the IC50 profile as well as the antioxidant and migration activities. It should be noted, however, that these investigations were exclusively conducted utilizing the most potent extracts. These extracts were thoroughly examined on both the HepG2 and Caco cell lines to elucidate their potential anticancer effects. In vitro tests on cell cultures showed a significant concentration cytotoxic effect on all cell lines (HepG2, HCT, Caco, Mcf-7, and T47D) treated with six essential oil samples at the exposure time (48 h). Therefore, they showed remarkable antioxidant activity with simultaneous cytotoxic effects. In total, 50% and 80% of the A. muricata extract, the extract with the highest migratory activity, demonstrated a dose-dependent inhibition of migration. It was strong on highly metastatic Caco cells 48 h after treatment and scraping the Caco cell sheet, with the best reduction in the migration of HepG2 cells caused by the 50% A. reticulata extract. Also, the samples showing a significant IC50 value showed a significant effect in stopping metastasis and invasion of various cancer cell lines, making them an interesting topic for further research.

11.
Front Microbiol ; 14: 1320116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38293558

RESUMEN

In the present study, fungi were isolated and screened from barren land in south-eastern Coalfields limited (SECL) in Chhattisgarh, India. Out of 14 isolated fungi, only three fungal isolates exhibited pigmentation in screening studies. The isolated fungal strain SP1 exhibited the highest pigmentation, which was further utilized for in vivo production, purification, and characterization of melanin pigment. The physical and chemical properties of the fungal pigment showed insolubility in organic solvents and water, solubility in alkali, precipitation in acid, and decolorization with oxidizing agents. The physiochemical characterization and analytical studies of the extracted pigment using ultraviolet-visible spectroscopy and Fourier transform infrared (FTIR) confirmed it as a melanin pigment. The melanin-producing fungus SP1 was identified as Thermothelomyces hinnuleus based on 18S-rRNA sequence analysis. Furthermore, to enhance melanin production, a response surface methodology (RSM) was employed, specifically utilizing the central composite design (CCD). This approach focused on selecting efficient growth as well as progressive yield parameters such as optimal temperature (34.4°C), pH (5.0), and trace element concentration (56.24 mg). By implementing the suggested optimal conditions, the production rate of melanin increased by 62%, resulting in a yield of 28.3 mg/100 mL, which is comparatively higher than the actual yield (17.48 ± 2.19 mg/100 mL). Thus, T. hinnuleus SP1 holds great promise as a newly isolated fungal strain that could be used for the industrial production of melanin.

12.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37895884

RESUMEN

Nanotechnology is one of the most advance and multidisciplinary fields. Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. The use of plants and their extracts is one of the most valuable methods towards rapid and single-step protocol preparation for various nanoparticles, keeping intact "the green principles" over the conventional ones and proving their dominance for medicinal importance. A facile and eco-friendly technique for synthesizing silver nanoparticles has been developed by using the latex of Euphorbia royleana as a bio-reductant for reducing Ag+ ions in an aqueous solution. Various characterization techniques were employed to validate the morphology, structure, and size of nanoparticles via UV-Vis spectroscopy, XRD, SEM, and EDS. FTIR spectroscopy validates different functional groups associated with biomolecules stabilizing/capping the silver nanoparticles, while SEM and XRD revealed spherical nanocrystals with FCC geometry. The results revealed that latex extract-mediated silver nanoparticles (LER-AgNPs) exhibited promising antibacterial activity against both gram-positive and -negative bacterial strains (Bacillus pumilus, Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, and Streptococcus viridians). Both latex of E. royleana and LER-AgNPs were found to be potent in scavenging DPPH free radicals with respective EC50s and EC70s as 0.267% and 0.518% and 0.287% and 0.686%. ROSs produced in the body damage tissue and cause inflammation in oxidative stress-originated diseases. H2O2 and OH* scavenging activity increased with increasing concentrations (20-100 µg/mL) of LER-AgNPs. Significant reestablishment of ALT, AST, ALP, and bilirubin serum levels was observed in mice intoxicated with acetaminophen (PCM), revealing promising hepatoprotective efficacy of LER-AgNPs in a dose-dependent manner.

13.
Pharmaceutics ; 15(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37896146

RESUMEN

Propolis is a naturally occurring substance with beneficial properties; bees produce it from various plant sources, and it is an anti-inflammatory and therapeutic resinous substance. This study aimed to enhance the biological features of propolis extract by loading it onto active film. Firstly, extraction was performed using three solvent systems, and their total phenolic, flavonoid, and antioxidant activity was measured. Propolis ethanol extract (EEP) was evaluated for phenolic fraction content and then chosen to prepare a chitosan-loaded emulsion with several concentrations. The antibacterial, anti-mycotic, and anti-mycotoxigenic properties of the extract and nanoemulsion were assessed. PPE's cytotoxicity and nanoemulsion were evaluated using brine shrimp and cell line assays. Results indicate higher phenolic (322.57 ± 4.28 mg GAE/g DW), flavonoid (257.64 ± 5.27 mg QE/g DW), and antioxidant activity of the EEP. The phenolic fraction is distinguished by 18 phenolic acids with high p-hydroxybenzoic content (171.75 ± 1.64 µg/g) and 12 flavonoid compounds with high pinocembrin and quercetin content (695.91 ± 1.76 and 532.35 ± 1.88 µg/g, respectively). Phenolic acid derivatives (3,4-Dihydroxybenzaldehyde, 3,4-Dihydroxyphenol acetate, and di-methoxy cinnamic) are also found. Concentrations of 50, 100, 150, and 200 ng EEP loaded on chitosan nanoemulsion reflect significant antibacterial activity against pathogenic bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA) and toxigenic fungi, particularly Fusarium. Among the four EEP-loaded concentrations, the nanoemulsion with 150 ng showed outstanding features. Using a simulated medium, 150 and 200 ng of EEP-loaded chitosan nanoemulsion concentrations can stop zearalenone production in Fusarium media with complete fungi inhibition. Also, it reduced aflatoxins production in Aspergillus media, with fungal inhibition (up to 47.18%). These results recommended the EEP-chitosan application for pharmaceutics and medical use as a comprehensive wound healing agent.

14.
Plants (Basel) ; 11(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35567125

RESUMEN

The exploitation of massive amounts of food and agro-waste represents a severe social, economic, and environmental issue. Under the growing demand for food products that are free of toxic synthetic insecticides, a methanolic extract of spent coffee grounds (SCGs), which represent the main byproduct of coffee production, was applied in the current study as a bioinsecticide against the main pests of the green bean: Spodoptera littoralis, Agrotis ipsilon, Bemisia tabaci, Empoasca fabae, and Aphis craccivora. A deterrent assay, contact bioassay, and lethal concentration analysis were performed to reveal the repellent, antifeedant, and oviposition deterrent effects. Parallel to the above-mentioned bioassays, the phytochemical composition of the methanolic SCG extract was investigated via a high-performance liquid chromatography (HPLC) analysis. Fourteen phenolic acids and five flavonoids, in addition to caffeine (alkaloid), were identified in the extract. Cinnamic, rosmarinic, and gallic acids were the predominant phenolics, while apigenin-7-glucoside was the main flavonoid, followed by naringin, catechin, and epicatechin. The extract of SCGs showed an insecticidal effect, with a mortality between 27.5 and 76% compared to the control (7.4%) and based on the concentration of the extract used. In the same trend, the oviposition efficiency revealed different batches of laid eggs (0.67, 2.33, 7.33, and 8.67 batches/jar) for 100, 50, and 25% of the SCG extract and the control. Finally, the major components of the SCG extract were docked into the insecticide acetylcholinesterase enzyme to explore their potential for inhibition, where apigenin-7-glucoside showed a higher binding affinity, followed by catechin, compared to the control (lannate). The obtained findings could be a starting point for developing novel bioinsecticides from SCGs.

15.
Nanomaterials (Basel) ; 12(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35957062

RESUMEN

The emergence of multidrug-resistant (MDR) bacteria is a danger to public health and exposes patients to high risk, increasing morbidity and mortality worldwide. For this purpose, three months of evaluation of MDR's prevalence and antimicrobial susceptibility patterns in the military regional university hospital of Constantine from different services and samples was carried out. Among a total of 196 isolates, 35.2% were MDR. The use of essential oils such as Origanum glandulosum Desf. as an alternative to antibiotics is attractive due to their rich content of bioactive compounds conferring many biological activities. Also, to overcome the drawbacks of using oils as the hydrophobicity and negative interaction with the environmental conditions, in addition to increasing their activity, encapsulation for the oil was performed using high-speed homogenization (HSH) into nanocapsules and high-pressure homogenization (HPH) into nanoemulsion. Nine volatile constituents were determined using gas chromatography-mass spectrometry analysis (GC-MS) in hydrodistilled oil with thymol, carvacrol, p-cymene, and γ-terpinene as dominants. A dramatic decrease in the major volatile components was observed due to the use of HSH and HPH but generated the same oil profile. The mean particle size of the nanoemulsion was 54.24 nm, while that of nanocapsules was 120.60 nm. The antibacterial activity of the oil and its nanoparticles was estimated on MDR isolates using the disk diffusion, aromatogram, and broth microdilution methods. Consistent with the differences in volatile constituents, the oil exhibited a higher antibacterial activity compared to its nanoforms with the diameters of the inhibition zone against E. coli (20 mm), S. aureus (35 mm), and A. baumannii (40 mm). Both formulations have shown relatively significant activity against the biofilm state at sub-inhibitory concentrations, where nanoemulsion was more potent than nanocapsules. The results obtained suggested that nanoformulations of essential oils are strongly recommended for therapeutic application as alternatives to antibiotics.

16.
Foods ; 11(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37431005

RESUMEN

The present study aimed to develop instant mushroom soup fortified with mixed Jerusalem artichoke and Cauliflower powders (JACF) instead of wheat flour at different levels (5, 10, 15, and 20%) based on dry weight as natural sources of protein, ash, fiber, inulin, and bioactive components. Based on the proximate analysis, adding JACF with 20% recorded the highest contents of protein, ash, fibers, and inulin as 24.73, 3.67, 9.67, and 9.17%, respectively. In the same line, macro- and microelements and essential amino acids showed a significant increase during fortification with 5-20% JACF compared to the control. In contrast, the total carbohydrate content and caloric values were decreased with the raised JACF concentration in the soup. The highest content of total phenolic acids, flavonoids, glucosinolates, carotenoids, and ascorbic acid was detected in mushroom soup with a 20% JACF mixture, which coincides with the highest antioxidant activity. Gallic (20.81-94.34 mg/100 g DW) and protocatechuic (13.63-58.53 mg/100 g) acids predominated among the phenolic acids identified in the mushroom-JACF soup samples, while rutin was the main flavonoid (7.52-18.2 mg/100 g). The increase of the JACF mixture in the soup significantly enhanced the rehydration ratio, total soluble solids, color parameters, and the sensory properties of the samples. In conclusion, using JACF in mushroom soup is necessary to improve the physicochemical characteristics and nutritional impact by containing phytochemicals and enhancing the organoleptic properties of the food product.

17.
Foods ; 11(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35454686

RESUMEN

Frozen yogurt is known as ice cream with some properties of yogurt. Frozen yogurts are a rich source of sucrose levels between 15% and 28% of total ingredients. Consumers suffering from lactose intolerance and metabolic syndrome are looking for sugar-free products. The current study investigates the sugar replacements by using sweeteners (stevia, sucralose and sorbitol) on physicochemical, microbiological, microstructural and sensory characteristics of probiotic-frozen yogurt. Four different treatments of probiotic-frozen yogurts were studied (control probiotic-frozen yogurt with sucrose (F1), probiotic-frozen yogurt with stevia (F2), probiotic-frozen yogurt with sucralose (F3) and probiotic-frozen yogurt with sorbitol (F4)). The chemical properties were not significantly present p > 0.05) during storage in all treatments. In the F1 treatment, sucrose value was higher (14.87%) and not detected in the F2, F3 and F4 treatments. The highest values of overrun, hardness and viscosity (p < 0.05) were detected in the F2, F3 and F3 samples, but the lowest value was detected in the F1 treatment. Total Str. thermophilus and Lb. delbrueckii ssp. bulgaricus counts were gradually decreased (p < 0.05) during storage periods. At 1 day, the Bifidobacteria counts ranged from 7.56 to 7.60 log10 CFU g−1 in all groups and gradually decreased during storage, but these bacterial counts remained viable (>6.00 log10 CFU g−1) during storage periods up to 60 d. During storage periods, the highest scores of total acceptability were detected in the F3, F4 and F2 treatments. Scanning electron microscopy (SEM) micrographs of all probiotic-frozen yogurt treatments illustrated that the microstructures showed a difference with a fine network, size pores and structure between the frozen yogurt with sweeteners (F2, F3 and F3) and control frozen yogurt (F1).

18.
Braz J Microbiol ; 53(2): 709-714, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35239153

RESUMEN

Bees are one of the ancient and the most social insects worldwide. They are of great economic and medical importance. Bee venom (BV) has many therapeutic effects and has been used since ancient times for the treatment of many diseases. The present study aimed to evaluate and compare the antibacterial effect of BV from two different bee subspecies Apis mellifera yemenitica (A. m. yemenitica) (indigenous strain) and Apis mellifera carnica (A. m. carnica) (carniolan strain) against selected Gram-positive and Gram-negative bacteria. Experimentally, venoms were extracted using an electrical venom collector from honey bee colonies of the subspecies, A. m. yemenitica and A. m. carnica, in Hail, Saudi Arabia. Each venom was tested against selected medically important Gram-negative strains, Salmonella Typhimurium, Pseudomonas aeruginosa, and Escherichia coli, while Staphylococcus aureus was selected as Gram-positive test organism. The minimum inhibitory concentration (MIC) method was used to compare the effect of BV from the two subspecies on the growth of the selected bacterial strains. Results showed that BV from both subspecies could equally inhibit the growth of Salmonella Typhimurium, Pseudomonas aeruginosa, and Escherichia coli at an MIC of 10 mg/ml. However, S. aureus was inhibited by an MIC of 5 and 10 mg/ml of BV from A. m. carnica and A. m. yemenitica, respectively. This suggested that the BV of the carnica subspecie was more inhibitory to this Gram-positive pathogen than its counterpart produced by the yemenitica subspecies. The present study shows that bee venom has a promising antibacterial effect.


Asunto(s)
Venenos de Abeja , Staphylococcus aureus , Animales , Antibacterianos/farmacología , Bacterias , Venenos de Abeja/farmacología , Abejas , Escherichia coli , Bacterias Gramnegativas , Bacterias Grampositivas
19.
Plants (Basel) ; 11(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35956507

RESUMEN

The Barhi date is a high-quality date cultivar whose fruits (dates) are plucked and eaten fresh when they reach the Khalal maturity stage due to their sweetness, crispiness, and yellow skin color. After harvesting, Khalal Barhi fruits rapidly matured to the Rutab stage, where their tissues become soft and their skin color browner. This results in a decrease in their market value and customer demand. This study aims at investigating the effectiveness of the postharvest ultrasonic treatment in conserving the physical, microbial, and nutritional quality of Barhi fruits and extending their shelf life. To achieve the goals of the present work, the response surface methodology (RSM) was used for the optimization of the ultrasonic intensity (50, 100, 150, and 200 W/cm2) and application time (5, 10, 15, and 20 min) to preserve the Barhi dates high quality features for varied storage temperatures (1, 5, 15, and 25 °C) and duration (1, 6, 16, and 21 days). In RSM, a four-factors-mixed-levels central composite rotatable design (CCRD) was applied to optimize the ultrasound treatment and storage environments for better-quality physical [total soluble solids (TSS), firmness, and total color changes (ΔE)], microbial [total viable count (TVC)], nutritional [total phenolic content (TPC), DPPH antiradical activity, glucose, and fructose] features of Barhi dates. The outcomes showed that ultrasound intensity and its application time, storage temperature, and storage period influence the physical, microbial, and nutritional quality attributes in different magnitudes. The ideal settings for lessening the changes in the physical attributes, eliminating the microbial growth, and improving the nutritional quality attributes were 140 W/cm2, 5.2 min, 20.9 °C, and 21 days for ultrasound intensity, ultrasound exposure duration, storage temperature, and storage duration, respectively. In conclusion, this study proved the potential application of ultrasound for persevering the excellence aspects of Barhi dates and identified the ideal ultrasound environments for maintaining the physical, microbial, and nutritional quality features of Barhi dates during extended storing.

20.
Plants (Basel) ; 11(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36079703

RESUMEN

Barhi date fruit is one of the most important fruits that has high consumer preference and market value at the Khalal maturity stage. However, this stage is very short and the fruit is vulnerable to decay and the ripening process under improper handling and storage conditions. Thus, the purpose of this study was to evaluate the feasibility of utilizing ultraviolet (UV-C) as a method to preserve the qualitative features of Barhi dates under various storage circumstances. The core of this study was defining the best conditions for UV-C treatment of Barhi dates, which was accomplished using a response surface methodology (RSM) model with a central composite, rotating four-factors-mixed-levels design (CCRD). The impacts of independent variables [UV-C exposure time (1, 2, 3, 4 min), UV-C dose (1, 3, 5, 7 kJ/m2), storage time (1, 6, 11, 16, 21 days) and storage temperature (1, 5, 15, 25 °C)] on the moisture content (MC), total soluble solids (TSS), total color changes (E), firmness, total phenolic content (TPC), total viable count (TVC), DPPH antiradical activity, fructose and glucose were investigated. The results revealed that the optimum UV-C treatment and storage settings for keeping the quality features of the dates were the UV-C exposure period and dosage of 1 min and 2.07 kJ/m2, and the storage time and temperature of 18 days and 12.36 °C, respectively. At the optimum conditions, the values of 59.66% moisture content, 38.24% TSS, 60.24 N firmness value, 48.83 ΔE, 0.07 log CFU/g TVC, 5.29 mg GAE/g TPC, 56.32% DPPH antiradical activity, 6.87 g/100 g fructose and 14.02 g/100 g glucose were comparable predicted values demonstrating the suitability of the used RSM models. Overall, the perfect UV-C treatment and storage circumstances for extending the storability and shelf life and maintaining the quality features of Barhi dates were identified in this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA