Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(3): 595-609, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25892225

RESUMEN

Organisms must be able to respond to low oxygen in a number of homeostatic and pathological contexts. Regulation of hypoxic responses via the hypoxia-inducible factor (HIF) is well established, but evidence indicates that other, HIF-independent mechanisms are also involved. Here, we report a hypoxic response that depends on the accumulation of lactate, a metabolite whose production increases in hypoxic conditions. We find that the NDRG3 protein is degraded in a PHD2/VHL-dependent manner in normoxia but is protected from destruction by binding to lactate that accumulates under hypoxia. The stabilized NDRG3 protein binds c-Raf to mediate hypoxia-induced activation of Raf-ERK pathway, promoting angiogenesis and cell growth. Inhibiting cellular lactate production abolishes the NDRG3-mediated hypoxia responses. Our study, therefore, elucidates the molecular basis for lactate-induced hypoxia signaling, which can be exploited for the development of therapies targeting hypoxia-induced diseases.


Asunto(s)
Hipoxia/metabolismo , Ácido Láctico/metabolismo , Hipoxia de la Célula , Línea Celular , Regulación de la Expresión Génica , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Sistema de Señalización de MAP Quinasas , Neovascularización Patológica/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Oxígeno/metabolismo , Unión Proteica , Quinasas raf/metabolismo
2.
EMBO J ; 36(8): 1011-1028, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28279976

RESUMEN

Oxygen deprivation induces a range of cellular adaptive responses that enable to drive cancer progression. Here, we report that lysine-specific demethylase 1 (LSD1) upregulates hypoxia responses by demethylating RACK1 protein, a component of hypoxia-inducible factor (HIF) ubiquitination machinery, and consequently suppressing the oxygen-independent degradation of HIF-1α. This ability of LSD1 is attenuated during prolonged hypoxia, with a decrease in the cellular level of flavin adenine dinucleotide (FAD), a metabolic cofactor of LSD1, causing HIF-1α downregulation in later stages of hypoxia. Exogenously provided FAD restores HIF-1α stability, indicating a rate-limiting role for FAD in LSD1-mediated HIF-1α regulation. Transcriptomic analyses of patient tissues show that the HIF-1 signature is highly correlated with the expression of LSD1 target genes as well as the enzymes of FAD biosynthetic pathway in triple-negative breast cancers, reflecting the significance of FAD-dependent LSD1 activity in cancer progression. Together, our findings provide a new insight into HIF-mediated hypoxia response regulation by coupling the FAD dependence of LSD1 activity to the regulation of HIF-1α stability.


Asunto(s)
Flavina-Adenina Dinucleótido/metabolismo , Regulación de la Expresión Génica , Histona Demetilasas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ubiquitinación , Hipoxia de la Célula , Flavina-Adenina Dinucleótido/genética , Histona Demetilasas/genética , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Estabilidad Proteica
3.
BMC Cancer ; 20(1): 1180, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267790

RESUMEN

BACKGROUND: Anchoring filament protein ladinin-1 (LAD1) was related to the aggressive progression of breast, lung, laryngeal and thyroid cancers. However, the association of LAD1 with colorectal cancer remained unknown. Here, to determine the relationship of LAD1 with colorectal cancer progression, we explored the effect of LAD1 loss on the malignant features of colorectal cancer cells. METHODS: We constructed LAD1-depleted cell lines and examined the effect of LAD1 deficiency on the phenotypic and molecular features of colorectal cancer cells in vitro. The function of LAD1 in metastasis in vivo was examined by establishing a spleen-to-liver metastasis mouse model. LAD1 protein expression in colorectal cancer patient specimens was assessed by immunohistochemistry of tumor microarrays. RESULTS: We found that LAD1 was abundant in most colorectal cancer cells. In addition, high expression of LAD1 significantly correlated with poor patient outcome. LAD1 depletion inhibited the migration and invasion of two different colorectal cancer cell lines, SW620 and Caco-2, without affecting their proliferation. In addition, LAD1 loss led to defects in liver metastasis of SW620 cells in the mouse model. Immunohistochemistry of colorectal cancer tissues revealed LAD1 enrichment in metastatic tissues compared to that in primary tumor and normal tissues. CONCLUSION: These results suggest that LAD1 expression is associated with the metastatic progression of colorectal cancer by promoting the migration and invasion of cancer cells.


Asunto(s)
Autoantígenos/metabolismo , Neoplasias Colorrectales/metabolismo , Colágenos no Fibrilares/metabolismo , Animales , Neoplasias Colorrectales/mortalidad , Femenino , Ratones , Metástasis de la Neoplasia , Análisis de Supervivencia , Transfección , Colágeno Tipo XVII
4.
Biochem Biophys Res Commun ; 478(2): 976-81, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27524244

RESUMEN

MDM2, a critical negative regulator of p53, is often overexpressed in leukemia, but few p53 mutations are found, suggesting that p53-independent MDM2 expression occurs due to alterations in MDM2 upstream regulators. In this study, a high MDM2 transcription level was observed (41.17%) regardless of p53 expression in patient with acute myeloid leukemia (AML). Therefore, we performed genome-scale functional screening of the human genes modulating MDM2 expression in a p53-independent manner. We searched co-expression profiles of genes showing a positive or negative pattern with MDM2 expression in a DNA microarray database, selected1089 links, and composed a screening library of 368 genes. Using MDM2 P1 and P2 promoter-reporter systems, we screened clones regulating MDM2 transcriptions in a p53-independent manner by overexpression. Nine clones from the screening library showed enhanced MDM2 promoter activity and MDM2 expression in p53-deficient HCT116 cells. Among them, six clones, including NTRK2, GNA15, SFRS2, EIF5A, ELAVL1, and YWHAB mediated MAPK signaling for expressing MDM2. These results indicate that p53-independent upregulation of MDM2 by increasing selected clones may lead to oncogenesis in AML and that MDM2-modulating genes are novel potential targets for AML treatment.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genoma Humano , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Bases , Supervivencia Celular/genética , Bases de Datos Genéticas , Células HCT116 , Humanos , Leucemia Mieloide Aguda/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética
5.
Mol Carcinog ; 55(12): 1915-1926, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26586336

RESUMEN

MicroRNAs (miRNAs) are recognized as crucial posttranscriptional regulators of gene expression, and play critical roles as oncogenes or tumor suppressors in various cancers. Here, we show that miR-196b is upregulated in mesenchymal-like-state non-small cell lung cancer (NSCLC) cells and lung cancer tissues. Moreover, miR-196b upregulation stimulates cell invasion and a change in cell morphology to a spindle shape via loss of cell-to-cell contacts. We identified homeobox A9 (HOXA9) as a target gene of miR-196b by using public databases such as TargetScan, miRDB, and microRNA.org. HOXA9 expression is inversely correlated with miR-196b levels in clinical NSCLC samples as compared to that in corresponding control samples, and with the migration and invasion of NSCLC cells. Ectopic expression of HOXA9 resulted in a suppression of miR-196b-induced cell invasion, and HOXA9 reexpression increased E-cadherin expression. Furthermore, HOXA9 potently attenuated the expression of snail family zinc finger 2 (SNAI2/SLUG) and matrix metallopeptidase 9 (MMP9) by controlling the binding of nuclear factor-kappa B to the promoter of SLUG and MMP9 genes, respectively. Therefore, we suggest that HOXA9 plays a central role in controlling the aggressive behavior of lung cancer cells and that miR-196b can serve as a potential target for developing anticancer agents. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Neoplasias Pulmonares/genética , Pulmón/patología , MicroARNs/genética , FN-kappa B/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Proteínas de Homeodominio/metabolismo , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Regulación hacia Arriba
6.
Exp Cell Res ; 336(1): 119-29, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26112218

RESUMEN

Despite its wide use as a first-line therapeutic agent, gemcitabine has shown limited efficacy in advanced pancreatic cancer due to chemoresistance by as yet unidentified mechanisms. Our goal here was to identify molecular features involved in gemcitabine chemoresistance. Pyruvate kinase M2 (PKM2), a key enzyme of aerobic glycolysis, has recently emerged as an important therapeutic target for cancer treatment. It is involved in the metabolic reprogramming of cancer cells and has previously unexpected non-metabolic functions that are heavily involved in tumor growth and survival. Herein, we report that the chemoresistance of pancreatic cancer to gemcitabine was dependent on PKM2 expression and its non-metabolic function. Knocking-down of PKM2 significantly enhanced gemcitabine-induced cell apoptosis through the activation of caspase 3/7 and PARP cleavage, and this inhibitory activity was associated with p38-mediated activation of p53 phosphorylation at serine 46. Our findings support the potential of PKM2 as a novel target for gemcitabine chemoresistance and suggest the feasibility of combining gemcitabine and PKM2 inhibition for the improved chemotherapy of pancreatic cancer.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Proteínas Portadoras/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Hormonas Tiroideas/metabolismo , Apoptosis , Western Blotting , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proliferación Celular , Desoxicitidina/farmacología , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Neoplasias Pancreáticas/enzimología , Fosforilación/efectos de los fármacos , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Hormonas Tiroideas/genética , Células Tumorales Cultivadas , Gemcitabina , Proteínas de Unión a Hormona Tiroide
7.
BMC Genomics ; 16: 279, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25888140

RESUMEN

BACKGROUND: Despite the recent identification of several prognostic gene signatures, the lack of common genes among experimental cohorts has posed a considerable challenge in uncovering the molecular basis underlying hepatocellular carcinoma (HCC) recurrence for application in clinical purposes. To overcome the limitations of individual gene-based analysis, we applied a pathway-based approach for analysis of HCC recurrence. RESULTS: By implementing a permutation-based semi-supervised principal component analysis algorithm using the optimal principal component, we selected sixty-four pathways associated with hepatitis B virus (HBV)-positive HCC recurrence (p < 0.01), from our microarray dataset composed of 142 HBV-positive HCCs. In relation to the public HBV- and public hepatitis C virus (HCV)-positive HCC datasets, we detected 46 (71.9%) and 18 (28.1%) common recurrence-associated pathways, respectively. However, overlap of recurrence-associated genes between datasets was rare, further supporting the utility of the pathway-based approach for recurrence analysis between different HCC datasets. Non-supervised clustering of the 64 recurrence-associated pathways facilitated the classification of HCC patients into high- and low-risk subgroups, based on risk of recurrence (p < 0.0001). The pathways identified were additionally successfully applied to discriminate subgroups depending on recurrence risk within the public HCC datasets. Through multivariate analysis, these recurrence-associated pathways were identified as an independent prognostic factor (p < 0.0001) along with tumor number, tumor size and Edmondson's grade. Moreover, the pathway-based approach had a clinical advantage in terms of discriminating the high-risk subgroup (N = 12) among patients (N = 26) with small HCC (<3 cm). CONCLUSIONS: Using pathway-based analysis, we successfully identified the pathways involved in recurrence of HBV-positive HCC that may be effectively used as prognostic markers.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico , Hepatitis B/diagnóstico , Neoplasias Hepáticas/diagnóstico , Adulto , Algoritmos , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/epidemiología , Análisis por Conglomerados , Bases de Datos Factuales , Supervivencia sin Enfermedad , Femenino , Hepacivirus/aislamiento & purificación , Hepatitis B/complicaciones , Hepatitis B/virología , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/epidemiología , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Análisis de Componente Principal , Pronóstico , Riesgo
8.
Carcinogenesis ; 35(3): 624-34, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24130170

RESUMEN

SH3RF (SH3-domain-containing RING finger protein) family members, SH3RF1-3, are multidomain scaffold proteins involved in promoting cell survival and apoptosis. In this report, we show that SH3RF2 is an oncogene product that is overexpressed in human cancers and regulates p21-activated kinase 4 (PAK4) protein stability. Immunohistochemical analysis of 159 colon cancer tissues showed that SH3RF2 expression levels are frequently elevated in cancer tissues and significantly correlate with poor prognostic indicators, including increased invasion, early recurrence and poor survival rates. We also demonstrated that PAK4 protein is degraded by the ubiquitin-proteasome system and that SH3RF2 inhibits PAK4 ubiquitination via physical interaction-mediated steric hindrance, which results in the upregulation of PAK4 protein. Moreover, ablation of SH3RF2 expression attenuates TRADD (TNFR-associated death domain) recruitment to tumor necrosis factor-α (TNF-α) receptor 1 and hinders downstream signals, thereby inhibiting NF-κB (nuclear factor-kappaB) activity and enhancing caspase-8 activity, in the context of TNF-α treatment. Notably, ectopic expression of SH3RF2 effectively prevents apoptosis in cancer cells and enhances cell migration, colony formation and tumor growth in vivo. Taken together, our results suggest that SH3RF2 is an oncogene that may be a definitive regulator of PAK4. Therefore, SH3RF2 may represent an effective therapeutic target for cancer treatment.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas Oncogénicas/fisiología , Oncogenes , Estabilidad Proteica , Quinasas p21 Activadas/fisiología , Secuencia de Bases , Línea Celular , Cartilla de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Biol Blood Marrow Transplant ; 20(5): 696-704, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24525278

RESUMEN

The doses of donor-derived natural killer (NK) cells that can be given safely after human leukocyte antigen (HLA)-haploidentical hematopoietic cell transplantation (HCT) remain to be defined. Forty-one patients (ages 17 to 75 years) with hematologic malignancy underwent HLA-haploidentical HCT after reduced-intensity conditioning containing busulfan, fludarabine, and antithymocyte globulin. Cell donors (ages 7 to 62 years) underwent growth factor-mobilized leukapheresis for 3 to 4 days. Cells collected on the first 2 to 3 days were used for HCT, whereas those collected on the last day were CD3-depleted and cultured into NK cells using human interleukins-15 and -21. These NK cells were then infused into patients twice at 2 and 3 weeks after HCT at an escalating doses of .2 × 10(8) cells/kg of body weight (3 patients), .5 × 10(8) cells/kg (3 patients), 1.0 × 10(8) cells/kg (8 patients), and ≥ 1.0 × 10(8) cells/kg or available cells (27 patients). At all dose levels, no acute toxicity was observed after NK cell infusion. After HLA-haploidentical HCT and subsequent donor NK cell infusion, when referenced to 31 historical patients who had undergone HLA-haploidentical HCT after the same conditioning regimen but without high-dose NK cell infusion, there was no significant difference in the cumulative incidences of major HCT outcomes, including engraftment (absolute neutrophil count ≥ 500/µL, 85% versus 87%), grade 2 to 4 acute graft-versus-host disease (GVHD, 17% versus 16%), moderate to severe chronic GVHD (15% versus 10%), and transplantation-related mortality (27% versus 19%). There was, however, a significant reduction in leukemia progression (74% to 46%), with post-transplantation NK cell infusion being an independent predictor for less leukemia progression (hazard ratio, .527). Our findings showed that, when given 2 to 3 weeks after HLA-haploidentical HCT, donor-derived NK cells were well tolerated at a median total dose of 2.0 × 10(8) cells/kg. In addition, they may decrease post-transplantation progression of acute leukemia.


Asunto(s)
Neoplasias Hematológicas/terapia , Trasplante de Células Madre Hematopoyéticas , Células Asesinas Naturales/trasplante , Agonistas Mieloablativos/uso terapéutico , Acondicionamiento Pretrasplante/métodos , Adolescente , Adulto , Anciano , Suero Antilinfocítico/uso terapéutico , Busulfano/uso terapéutico , Niño , Progresión de la Enfermedad , Femenino , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/mortalidad , Enfermedad Injerto contra Huésped/patología , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/mortalidad , Neoplasias Hematológicas/patología , Prueba de Histocompatibilidad , Humanos , Células Asesinas Naturales/inmunología , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Análisis de Supervivencia , Trasplante Homólogo , Vidarabina/análogos & derivados , Vidarabina/uso terapéutico
10.
BMC Cancer ; 14: 804, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25367337

RESUMEN

BACKGROUND: Anterior gradient 2 (AGR2) has been implicated in tumor-associated phenotypes such as cell viability, invasion and metastasis in various human cancers. However, the tumor promoting activity of AGR2 has not yet been determined in biliary tract cancers. Thus, we examined the expression of AGR2 and its tumor-promoting activity in biliary tract cancer cells in this study. METHODS: Expression of AGR2 mRNA and protein was analyzed by real time RT-PCR and western blotting, respectively. MTT assay was employed to measure cell viability and pulsed BrdU incorporation by proliferating cells was monitored by flow cytometry. Soft agar colony formation assay and transwell invasion assay were employed to determine anchorage-independent growth and in vitro invasion of the tumor cells, respectively. In vivo tumor formation was examined by injection of tumor cells into immunocompromised mice subcutaneously. Statistical analysis was performed with 2-tailed unpaired Student's t-test for continuous data and with one-way ANOVA for multiple group comparisons. Bonferroni tests were used for post hoc 2-sample comparisons. RESULTS: AGR2 mRNA was detected in SNU-245, SNU-478, and SNU-1196 cell lines, and its protein expression was confirmed in SNU-478 and SNU-245 cell lines by western blot analysis. Knockdown of AGR2 expression with an AGR2-specific short hairpin RNA (shRNA) in SNU-478, an ampulla of Vater cancer cell line resulted in decreased cell viability and in decreased anchorage-independent growth by 98%. The AGR2 knockdown also increased the sensitivity of the cells to chemotherapeutic drugs, including gemcitabine, 5-fluorouracil and cisplatin. In addition, SNU-478 cells expressing AGR2-shRNA failed to form detectable tumor xenografts in nude mice, whereas control cells formed tumors with an average size of 179 ± 84 mm3 in 3 weeks. Overexpression of AGR2 in SNU-869 cells significantly increased cell viability through enhanced cell proliferation and the number of Matrigel™-invading cells compared with AGR2-negative SNU-869 cells. CONCLUSIONS: Our findings implicate that AGR2 expression augments tumor-associated phenotypes by increasing proliferative and invasive capacities of the ampulla of Vater cancer cells.


Asunto(s)
Ampolla Hepatopancreática/metabolismo , Neoplasias del Conducto Colédoco/genética , Neoplasias del Conducto Colédoco/metabolismo , Expresión Génica , Fenotipo , Proteínas/genética , Ampolla Hepatopancreática/patología , Animales , Línea Celular Tumoral , Neoplasias del Conducto Colédoco/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Ratones , Mucoproteínas , Proteínas Oncogénicas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Carga Tumoral
11.
Carcinogenesis ; 34(5): 1134-43, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23354306

RESUMEN

The mitogen-activated protein kinase kinase 1 and 2 signaling pathway is a major component of the RAS (Rat sarcoma)/RAF (Radpidly accelerated fibrosarcoma)/MEK (mitogen-activated protein kinase kinase)/ERKs (Extracellular signal-regulated kinases) signaling axis that regulates tumorigenesis and cancer cell growth. MEK is frequently activated in various cancers that have mutations in the KRAS and BRAF oncogenes. Therefore, MEK has been suggested as a therapeutic target for inhibitor development against tumors that are dependent on the activating mutations in mitogen-activated protein kinase signaling. Herein, we report the discovery of three novel MEK inhibitors, herein referred to as CInQ-01, CInQ-03 and CInQ-06. All three inhibitors were highly effective in suppressing MEK1 and MEK2 in vitro kinase activity as well as anchorage-dependent and anchorage-independent cell growth. The inhibitory activity was associated with markedly reduced phosphorylation of ERKs and ribosomal S6 kinases. Furthermore, administration of CInQ-03 inhibited colon cancer cell growth in an in vivo xenograft mouse model and showed no skin toxicity. Overall, these results suggest that these novel MEK inhibitors might be used for chemotherapy or prevention.


Asunto(s)
Antineoplásicos/farmacología , Transformación Celular Neoplásica/efectos de los fármacos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células HCT116 , Humanos , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/genética , MAP Quinasa Quinasa 2/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Desnudos , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción AP-1/antagonistas & inhibidores , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
12.
J Neurosci ; 31(11): 4063-73, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21411648

RESUMEN

Hypoxic damage to the prefrontal cortex (PFC) has been implicated in the frontal lobe dysfunction found in various neuropsychiatric disorders. The underlying subcortical mechanisms, however, have not been well explored. In this study, we induced a PFC-specific hypoxia-like damage by cobalt-wire implantation to demonstrate that the role of the mediodorsal thalamus (MD) is critical for the development of frontal lobe dysfunction, including frontal lobe-specific seizures and abnormal hyperactivity. Before the onset of these abnormalities, the cross talk between the MD and PFC nuclei at theta frequencies was enhanced. During the theta frequency interactions, burst spikes, known to depend on T-type Ca(2+) channels, were increased in MD neurons. In vivo knockout or knockdown of the T-type Ca(2+) channel gene (Ca(V)3.1) in the MD substantially reduced the theta frequency MD-PFC cross talk, frontal lobe-specific seizures, and locomotor hyperactivity in this model. These results suggest a two-step model of prefrontal dysfunction in which the response to a hypoxic lesion in the PFC results in abnormal thalamocortical feedback driven by thalamic T-type Ca(2+) channels, which, in turn, leads to the onset of neurological and behavioral abnormalities. This study provides valuable insights into preventing the development of neuropsychiatric disorders arising from irreversible PFC damage.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Lóbulo Frontal/lesiones , Lóbulo Frontal/fisiopatología , Neuronas/metabolismo , Tálamo/metabolismo , Análisis de Varianza , Animales , Western Blotting , Condicionamiento Clásico/fisiología , Electrofisiología , Miedo , Femenino , Cuerpos Extraños , Lóbulo Frontal/metabolismo , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Ratones , Actividad Motora/fisiología
13.
Ann Surg Oncol ; 19 Suppl 3: S328-38, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21533656

RESUMEN

BACKGROUND: The tissue environment in the region of hepatocellular carcinoma (HCC) influences both vascular invasion and recurrence. Thus, HCC patient prognosis depends on the characteristics not only of the tumor but also those of adjacent surrounding liver tissue. MATERIALS AND METHODS: Expression profiles of both tumor and adjacent liver tissue following curative resection were measured to discriminate 56 hepatitis B virus-positive HCC patients into subgroups based on survival risk. This approach was further tested in 40 patients. RESULTS: Expression profiles of both tumor and adjacent liver tissue successfully discriminated 56 training samples into 2 subgroups, those at low- or high-risk for survival and recurrence. However, the prognostic gene set selected for tumor tissue was quite different from that for adjacent tissues. This variation in prognostic genes resulted in a change in allocation of patients within each low- or high-risk group. Combination of survival subgroups from tumor and adjacent liver tissue significantly improved the prediction of prognostic outcome. This integrative approach was confirmed to be effective in a further 40 test patients. A clinicopathological study showed that survival subgroups divided by tumor and adjacent liver tissue gene expression were also statistically associated with UICC stage and extent of cell differentiation, respectively. CONCLUSIONS: Variation in gene expression during the nontumor stage as well as the tumor stage may affect the prognosis of HCC patients, and integration of the gene expression profiles of HCC and adjacent liver tissue increases discriminatory effectiveness between patient groups, predicting clinical outcomes with enhanced statistical reliability.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Perfilación de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Recurrencia Local de Neoplasia/genética , Carcinoma Hepatocelular/virología , Femenino , Genes Relacionados con las Neoplasias , Virus de la Hepatitis B , Hepatitis B Crónica/complicaciones , Humanos , Estimación de Kaplan-Meier , Hígado/metabolismo , Neoplasias Hepáticas/virología , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Modelos de Riesgos Proporcionales
14.
Biomedicines ; 10(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36551956

RESUMEN

Density-dependent regulation of cell growth is presumed to be caused by cell-cell contact, but the underlying molecular mechanism is not yet clearly defined. Here, we report that receptor-type protein tyrosine phosphatase-kappa (R-PTP-κ) is an important regulator of cell contact-dependent growth inhibition. R-PTP-κ expression increased in proportion to cell density. siRNA-mediated R-PTP-κ downregulation led to the loss of cell contact-mediated growth inhibition, whereas its upregulation reduced anchorage-independent cell growth in soft agar as well as tumor growth in nude mice. Expression profiling and luciferase reporter system-mediated signaling pathway analysis revealed that R-PTP-κ induced under cell contact conditions distinctly suppressed E2F activity. Among the structural domains of R-PTP-κ, the cytoplasmic domain containing the tandemly repeated PTP motif acts as a potent downregulator of the E2F pathway. Specifically, R-PTP-κ suppressed CDK2 activity through the induction of p21Cip1/WAF-1 and p27Kip1, resulting in cell cycle arrest at the G1 phase. In transcriptome-based public datasets generated from four different tumor types, R-PTP-κ expression was negatively correlated with the expression pattern and prognostic value of two known E2F1 target genes (CCNE1 and CDC25A). Therefore, our results indicate that the R-PTP-κ-E2F axis plays a crucial role in cell growth-inhibitory signaling arising from cell-cell contact conditions.

15.
Cancers (Basel) ; 14(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35565351

RESUMEN

Drug resistance limits the efficacy of targeted therapies, including tyrosine kinase inhibitors (TKIs); however, a substantial portion of the drug resistance mechanisms remains unexplained. In this study, we identified LPIN1 as a key factor that regulates gefitinib resistance in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) cells. Unlike TKI-sensitive HCC827 cells, gefitinib treatment induced LPIN1 expression and increased diacylglycerol concentration in TKI-resistant H1650 cells, followed by the activation of protein kinase C delta and nuclear factor kappa B (NF-κB) in an LPIN1-dependent manner, resulting in cancer cell survival. Additionally, LPIN1 increased the production of lipid droplets, which play an important role in TKI drug resistance. All results were recapitulated in a patient-derived EGFR-mutant NSCLC cell line. In in vivo tumorigenesis assay, we identified that both shRNA-mediated depletion and pharmaceutical inhibition of LPIN1 clearly reduced tumor growth and confirmed that gefitinib treatment induced LPIN1 expression and LPIN1-dependent NF-κB activation (an increase in p-IκBα level) in tumor tissues. These results suggest an effective strategy of co-treating TKIs and LPIN1 inhibitors to prevent TKI resistance in NSCLC patients.

16.
Cells ; 11(9)2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35563842

RESUMEN

N-Myc downstream regulated gene 3 (NDRG3) is a unique pro-tumorigenic member among NDRG family genes, mediating growth signals. Here, we investigated the pathophysiological roles of NDRG3 in relation to cell metabolism by disrupting its functions in liver. Mice with liver-specific KO of NDRG3 (Ndrg3 LKO) exhibited glycogen storage disease (GSD) phenotypes including excessive hepatic glycogen accumulation, hypoglycemia, elevated liver triglyceride content, and several signs of liver injury. They suffered from impaired hepatic glucose homeostasis, due to the suppression of fasting-associated glycogenolysis and gluconeogenesis. Consistently, the expression of glycogen phosphorylase (PYGL) and glucose-6-phosphate transporter (G6PT) was significantly down-regulated in an Ndrg3 LKO-dependent manner. Transcriptomic and metabolomic analyses revealed that NDRG3 depletion significantly perturbed the methionine cycle, redirecting its flux towards branch pathways to upregulate several metabolites known to have hepatoprotective functions. Mechanistically, Ndrg3 LKO-dependent downregulation of glycine N-methyltransferase in the methionine cycle and the resultant elevation of the S-adenosylmethionine level appears to play a critical role in the restructuring of the methionine metabolism, eventually leading to the manifestation of GSD phenotypes in Ndrg3 LKO mice. Our results indicate that NDRG3 is required for the homeostasis of liver cell metabolism upstream of the glucose-glycogen flux and methionine cycle and suggest therapeutic values for regulating NDRG3 in disorders with malfunctions in these pathways.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno , Metionina , Animales , Glucosa/metabolismo , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Hígado/metabolismo , Metionina/metabolismo , Ratones , Ratones Noqueados , Fenotipo , S-Adenosilmetionina/metabolismo
17.
J Exp Clin Cancer Res ; 41(1): 212, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768842

RESUMEN

BACKGROUND: Identifying biomarkers related to the diagnosis and treatment of gastric cancer (GC) has not made significant progress due to the heterogeneity of tumors. Genes involved in histological classification and genetic correlation studies are essential to develop an appropriate treatment for GC. METHODS: In vitro and in vivo lentiviral shRNA library screening was performed. The expression of Synaptotagmin (SYT11) in the tumor tissues of patients with GC was confirmed by performing Immunohistochemistry, and the correlation between the expression level and the patient's survival rate was analyzed. Phospho-kinase array was performed to detect Jun N-terminal kinase (JNK) phosphorylation. SYT11, JNK, and MKK7 complex formation was confirmed by western blot and immunoprecipitation assays. We studied the effects of SYT11 on GC proliferation and metastasis, real-time cell image analysis, adhesion assay, invasion assay, spheroid formation, mouse xenograft assay, and liver metastasis. RESULTS: SYT11 is highly expressed in the stem-like molecular subtype of GC in transcriptome analysis of 527 patients with GC. Moreover, SYT11 is a potential prognostic biomarker for histologically classified diffuse-type GC. SYT11 functions as a scaffold protein, binding both MKK7 and JNK1 signaling molecules that play a role in JNK1 phosphorylation. In turn, JNK activation leads to a signaling cascade resulting in cJun activation and expression of downstream genes angiopoietin-like 2 (ANGPTL2), thrombospondin 4 (THBS4), Vimentin, and junctional adhesion molecule 3 (JAM3), which play a role in epithelial-mesenchymal transition (EMT). SNU484 cells infected with SYT11 shRNA (shSYT11) exhibited reduced spheroid formation, mouse tumor formation, and liver metastasis, suggesting a pro-oncogenic role of SYT11. Furthermore, SYT11-antisense oligonucleotide (ASO) displayed antitumor activity in our mouse xenograft model and was conferred an anti-proliferative effect in SNU484 and MKN1 cells. CONCLUSION: SYT11 could be a potential therapeutic target as well as a prognostic biomarker in patients with diffuse-type GC, and SYT11-ASO could be used in therapeutic agent development for stem-like molecular subtype diffuse GC.


Asunto(s)
Proteína 2 Similar a la Angiopoyetina , MAP Quinasa Quinasa 7 , Sistema de Señalización de MAP Quinasas , Neoplasias Gástricas , Sinaptotagminas , Proteína 2 Similar a la Angiopoyetina/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Xenoinjertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , MAP Quinasa Quinasa 7/metabolismo , Ratones , ARN Interferente Pequeño/farmacología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Sinaptotagminas/biosíntesis , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
18.
J Biol Chem ; 285(53): 41270-9, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-21041295

RESUMEN

Like most metalloproteases, matrix metalloprotease 2 (MMP-2) is synthesized as a zymogen. MMP-2 propeptide plays a role in inhibition of catalytic activity through a cysteine-zinc ion pairing, disruption of which results in full enzyme activation. A variety of proteases have been shown to be involved in the activation of pro-MMP-2, including metalloproteases and serine proteases. In the previous study we showed that MMP-2 activation occurred via specific cleavages of the propeptide by thrombin followed by intermolecular autoproteolytic processing for full enzymatic activity. Thrombin also degraded MMP-2, but this degradation was reduced greatly under cell-associated conditions with a concomitant increase in activation, prompting us to elucidate the molecular mechanisms underlying thrombin-mediated MMP-2 activation. In the present study we demonstrate that heparan sulfate is essential for thrombin-mediated activation of pro-MMP-2. Binding of heparan sulfate to thrombin is primarily responsible for this activation process, presumably through conformational changes at the active site. Furthermore, interaction of MMP-2 with exosites 1 and 2 of thrombin is crucial for thrombin-mediated MMP-2 degradation, and inhibition of this interaction by heparan sulfate or hirudin fragment results in a decrease in MMP-2 degradation. Finally, we demonstrated interaction between exosite 1 and hemopexin-like domain of MMP-2, suggesting a regulatory role of hemopexin-like domain in MMP-2 degradation. Taken together, our experimental data suggest a novel regulatory mechanism of thrombin-dependent MMP-2 enzymatic activity by heparan sulfate proteoglycans.


Asunto(s)
Heparitina Sulfato/química , Metaloproteinasa 2 de la Matriz/metabolismo , Trombina/química , Animales , Sitios de Unión , Encéfalo/citología , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Hemopexina/química , Humanos , Células K562 , Mutación , Conformación Proteica , Estructura Terciaria de Proteína
19.
BMC Genomics ; 12 Suppl 3: S3, 2011 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22369201

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. A number of molecular profiling studies have investigated the changes in gene and protein expression that are associated with various clinicopathological characteristics of HCC and generated a wealth of scattered information, usually in the form of gene signature tables. A database of the published HCC gene signatures would be useful to liver cancer researchers seeking to retrieve existing differential expression information on a candidate gene and to make comparisons between signatures for prioritization of common genes. A challenge in constructing such database is that a direct import of the signatures as appeared in articles would lead to a loss or ambiguity of their context information that is essential for a correct biological interpretation of a gene's expression change. This challenge arises because designation of compared sample groups is most often abbreviated, ad hoc, or even missing from published signature tables. Without manual curation, the context information becomes lost, leading to uninformative database contents. Although several databases of gene signatures are available, none of them contains informative form of signatures nor shows comprehensive coverage on liver cancer. Thus we constructed Liverome, a curated database of liver cancer-related gene signatures with self-contained context information. DESCRIPTION: Liverome's data coverage is more than three times larger than any other signature database, consisting of 143 signatures taken from 98 HCC studies, mostly microarray and proteome, and involving 6,927 genes. The signatures were post-processed into an informative and uniform representation and annotated with an itemized summary so that all context information is unambiguously self-contained within the database. The signatures were further informatively named and meaningfully organized according to ten functional categories for guided browsing. Its web interface enables a straightforward retrieval of known differential expression information on a query gene and a comparison of signatures to prioritize common genes. The utility of Liverome-collected data is shown by case studies in which useful biological insights on HCC are produced. CONCLUSION: Liverome database provides a comprehensive collection of well-curated HCC gene signatures and straightforward interfaces for gene search and signature comparison as well. Liverome is available at http://liverome.kobic.re.kr.


Asunto(s)
Carcinoma Hepatocelular/genética , Bases de Datos Factuales , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Almacenamiento y Recuperación de la Información , Internet , Neoplasias Hepáticas/metabolismo , Transcriptoma , Interfaz Usuario-Computador
20.
Cancer ; 117(12): 2608-19, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21656738

RESUMEN

BACKGROUND: Kallikrein-related peptidase 6 (KLK6) encodes a trypsin-like serine protease that is up-regulated in several cancers, although the putative functions of KLK6 in cancer have not been elucidated. In the current study, overexpression of KLK6 was identified in colon cancer, and the possibility that KLK6 may be a suitable candidate as a tumor marker was examined. METHODS: Messenger RNA (mRNA) transcript levels and protein up-regulation of KLK6 in colon cancer tissues was examined using reverse transcriptase-polymerase chain reaction, immunohistochemistry, and clinicopathologic analyses. Cell proliferation, invasiveness, and antiapoptotic activity were determined in colon cancer cells that were transfected with small-interfering RNA (siRNA) of KLK6. RESULTS: KLK6 mRNA was up-regulated significantly in tumor tissues compared with nontumor regions. KLK6 protein was strongly expressed in adenocarcinomas but was not expressed in normal mucosa or in premalignant dysplastic lesions. Sera from patients with colon cancer revealed an increase in KLK6 secretion (0.25 µg/mL; P = .031) compared with noncancer cells (0.19 µg/mL). Clinicopathologic and immunohistochemical studies of 143 patients with colon cancer revealed a significant correlation between KLK6 expression and Dukes disease stage (P = .005). High KLK6 expression was associated significantly with shorter overall (P = .001) and recurrence-free survival (P = .001). The rates of proliferation and invasiveness were decreased by 50% in cells that were transfected with KLK6 siRNA. The overexpression of KLK6 led to decreased activity of the E-cadherin promoter. CONCLUSIONS: KLK6 was up-regulated significantly in tissues and sera from patients with colon cancer and was associated closely with a poor prognosis, suggesting that KLK6 may be used as a potential biomarker and a therapeutic target for colon cancer.


Asunto(s)
Neoplasias del Colon/enzimología , Calicreínas/fisiología , Adulto , Anciano , Línea Celular Tumoral , Colon/enzimología , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Femenino , Humanos , Calicreínas/análisis , Calicreínas/genética , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Estadificación de Neoplasias , Pronóstico , Modelos de Riesgos Proporcionales , ARN Mensajero/análisis , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA