Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Epidemiol ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013785

RESUMEN

The serial interval distribution is used to approximate the generation time distribution, an essential parameter to infer the transmissibility (${R}_t$) of an epidemic. However, serial interval distributions may change as an epidemic progresses. We examined detailed contact tracing data on laboratory-confirmed cases of COVID-19 in Hong Kong during the five waves from January 2020 to July 2022. We reconstructed the transmission pairs and estimated time-varying effective serial interval distributions and factors associated with longer or shorter intervals. Finally, we assessed the biases in estimating transmissibility using constant serial interval distributions. We found clear temporal changes in mean serial interval estimates within each epidemic wave studied and across waves, with mean serial intervals ranged from 5.5 days (95% CrI: 4.4, 6.6) to 2.7 (95% CrI: 2.2, 3.2) days. The mean serial intervals shortened or lengthened over time, which were found to be closely associated with the temporal variation in COVID-19 case profiles and public health and social measures and could lead to the biases in predicting ${R}_t$. Accounting for the impact of these factors, the time-varying quantification of serial interval distributions could lead to improved estimation of ${R}_t$, and provide additional insights into the impact of public health measures on transmission.

2.
Clin Infect Dis ; 74(4): 685-694, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34037748

RESUMEN

BACKGROUND: Estimates of the serial interval distribution contribute to our understanding of the transmission dynamics of coronavirus disease 2019 (COVID-19). Here, we aimed to summarize the existing evidence on serial interval distributions and delays in case isolation for COVID-19. METHODS: We conducted a systematic review of the published literature and preprints in PubMed on 2 epidemiological parameters, namely, serial intervals and delay intervals relating to isolation of cases for COVID-19 from 1 January 2020 to 22 October 2020 following predefined eligibility criteria. We assessed the variation in these parameter estimates using correlation and regression analysis. RESULTS: Of 103 unique studies on serial intervals of COVID-19, 56 were included, providing 129 estimates. Of 451 unique studies on isolation delays, 18 were included, providing 74 estimates. Serial interval estimates from 56 included studies varied from 1.0 to 9.9 days, while case isolation delays from 18 included studies varied from 1.0 to 12.5 days, which were associated with spatial, methodological, and temporal factors. In mainland China, the pooled mean serial interval was 6.2 days (range, 5.1-7.8) before the epidemic peak and reduced to 4.9 days (range, 1.9-6.5) after the epidemic peak. Similarly, the pooled mean isolation delay related intervals were 6.0 days (range, 2.9-12.5) and 2.4 days (range, 2.0-2.7) before and after the epidemic peak, respectively. There was a positive association between serial interval and case isolation delay. CONCLUSIONS: Temporal factors, such as different control measures and case isolation in particular, led to shorter serial interval estimates over time. Correcting transmissibility estimates for these time-varying distributions could aid mitigation efforts.


Asunto(s)
COVID-19 , Epidemias , China/epidemiología , Humanos , SARS-CoV-2
3.
Clin Infect Dis ; 73(12): 2344-2352, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34117868

RESUMEN

Incubation period is an important parameter to inform quarantine period and to study transmission dynamics of infectious diseases. We conducted a systematic review and meta-analysis on published estimates of the incubation period distribution of coronavirus disease 2019, and showed that the pooled median of the point estimates of the mean, median and 95th percentile for incubation period are 6.3 days (range, 1.8-11.9 days), 5.4 days (range, 2.0-17.9 days), and 13.1 days (range, 3.2-17.8 days), respectively. Estimates of the mean and 95th percentile of the incubation period distribution were considerably shorter before the epidemic peak in China compared to after the peak, and variation was also noticed for different choices of methodological approach in estimation. Our findings implied that corrections may be needed before directly applying estimates of incubation period into control of or further studies on emerging infectious diseases.


Asunto(s)
COVID-19 , Enfermedades Transmisibles Emergentes , Periodo de Incubación de Enfermedades Infecciosas , COVID-19/epidemiología , China/epidemiología , Humanos , Cuarentena , SARS-CoV-2
4.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32075938

RESUMEN

Recognition of influenza A virus (IAV) by the innate immune system triggers pathways that restrict viral replication, activate innate immune cells, and regulate adaptive immunity. However, excessive innate immune activation can exaggerate disease. The pathways promoting excessive activation are incompletely understood, with limited experimental models to investigate the mechanisms driving influenza virus-induced inflammation in humans. Interferon regulatory factor 5 (IRF5) is a transcription factor that plays important roles in the induction of cytokines after viral sensing. In an in vivo model of IAV infection, IRF5 deficiency reduced IAV-driven immune pathology and associated inflammatory cytokine production, specifically reducing cytokine-producing myeloid cell populations in Irf5-/- mice but not impacting type 1 interferon (IFN) production or virus replication. Using cytometry by time of flight (CyTOF), we identified that human lung IRF5 expression was highest in cells of the myeloid lineage. To investigate the role of IRF5 in mediating human inflammatory responses by myeloid cells to IAV, we employed human-induced pluripotent stem cells (hIPSCs) with biallelic mutations in IRF5, demonstrating for the first time that induced pluripotent stem cell-derived dendritic cells (iPS-DCs) with biallelic mutations can be used to investigate the regulation of human virus-induced immune responses. Using this technology, we reveal that IRF5 deficiency in human DCs, or macrophages, corresponded with reduced virus-induced inflammatory cytokine production, with IRF5 acting downstream of Toll-like receptor 7 (TLR7) and, possibly, retinoic acid-inducible gene I (RIG-I) after viral sensing. Thus, IRF5 acts as a regulator of myeloid cell inflammatory cytokine production during IAV infection in mice and humans and drives immune-mediated viral pathogenesis independently of type 1 IFN and virus replication.IMPORTANCE The inflammatory response to influenza A virus (IAV) participates in infection control but contributes to disease severity. After viral detection, intracellular pathways are activated, initiating cytokine production, but these pathways are incompletely understood. We show that interferon regulatory factor 5 (IRF5) mediates IAV-induced inflammation and, in mice, drives pathology. This was independent of antiviral type 1 IFN and virus replication, implying that IRF5 could be specifically targeted to treat influenza virus-induced inflammation. We show for the first time that human iPSC technology can be exploited in genetic studies of virus-induced immune responses. Using this technology, we deleted IRF5 in human myeloid cells. These IRF5-deficient cells exhibited impaired influenza virus-induced cytokine production and revealed that IRF5 acts downstream of Toll-like receptor 7 and possibly retinoic acid-inducible gene I. Our data demonstrate the importance of IRF5 in influenza virus-induced inflammation, suggesting that genetic variation in the IRF5 gene may influence host susceptibility to viral diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas/inmunología , Virus de la Influenza A/inmunología , Factores Reguladores del Interferón/metabolismo , Inmunidad Adaptativa/fisiología , Animales , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/fisiología , Virus de la Influenza A/metabolismo , Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Factores Reguladores del Interferón/inmunología , Interferón Tipo I/metabolismo , Pulmón/virología , Macrófagos/virología , Ratones , Infecciones por Orthomyxoviridae/virología , Replicación Viral/fisiología
5.
Proc Natl Acad Sci U S A ; 115(40): 10118-10123, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30217896

RESUMEN

Intestinal epithelial cells (IECs) play a key role in regulating immune responses and controlling infection. However, the direct role of IECs in restricting pathogens remains incompletely understood. Here, we provide evidence that IL-22 primed intestinal organoids derived from healthy human induced pluripotent stem cells (hIPSCs) to restrict Salmonella enterica serovar Typhimurium SL1344 infection. A combination of transcriptomics, bacterial invasion assays, and imaging suggests that IL-22-induced antimicrobial activity is driven by increased phagolysosomal fusion in IL-22-pretreated cells. The antimicrobial phenotype was absent in hIPSCs derived from a patient harboring a homozygous mutation in the IL10RB gene that inactivates the IL-22 receptor but was restored by genetically complementing the IL10RB deficiency. This study highlights a mechanism through which the IL-22 pathway facilitates the human intestinal epithelium to control microbial infection.


Asunto(s)
Células Epiteliales/inmunología , Células Madre Pluripotentes Inducidas/inmunología , Interleucinas/inmunología , Mucosa Intestinal/inmunología , Fagosomas/inmunología , Infecciones por Salmonella/inmunología , Salmonella typhimurium/inmunología , Células Epiteliales/microbiología , Células Epiteliales/patología , Humanos , Células Madre Pluripotentes Inducidas/microbiología , Células Madre Pluripotentes Inducidas/patología , Subunidad beta del Receptor de Interleucina-10/genética , Subunidad beta del Receptor de Interleucina-10/inmunología , Subunidad alfa del Receptor de Interleucina-21/genética , Subunidad alfa del Receptor de Interleucina-21/inmunología , Interleucinas/genética , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Fagosomas/genética , Fagosomas/microbiología , Fagosomas/patología , Infecciones por Salmonella/genética , Infecciones por Salmonella/patología , Salmonella typhimurium/genética , Interleucina-22
6.
Artículo en Inglés | MEDLINE | ID: mdl-29967020

RESUMEN

Surfing motility is a novel form of surface adaptation exhibited by the nosocomial pathogen Pseudomonas aeruginosa in the presence of the glycoprotein mucin, which is found in high abundance at mucosal surfaces, especially those of the lungs of cystic fibrosis and bronchiectasis patients. Here, we investigated the adaptive antibiotic resistance of P. aeruginosa under conditions in which surfing occurs compared that in to cells undergoing swimming. P. aeruginosa surfing cells were significantly more resistant to several classes of antibiotics, including aminoglycosides, carbapenems, polymyxins, and fluoroquinolones. This was confirmed by incorporation of antibiotics into growth medium, which revealed a concentration-dependent inhibition of surfing motility that occurred at concentrations much higher than those needed to inhibit swimming. To investigate the basis of resistance, transcriptome sequencing (RNA-Seq) was performed and revealed that surfing influenced the expression of numerous genes. Included among genes dysregulated under surfing conditions were multiple genes from the Pseudomonas resistome; these genes are known to affect antibiotic resistance when mutated. Screening transposon mutants in these surfing-dysregulated resistome genes revealed that several of these mutants exhibited changes in susceptibility to one or more antibiotics under surfing conditions, consistent with a contribution to the observed adaptive resistance. In particular, several mutants in resistome genes, including armR, recG, atpB, clpS, nuoB, and certain hypothetical genes, such as PA5130, PA3576, and PA4292, showed contributions to broad-spectrum resistance under surfing conditions and could be complemented by their respective cloned genes. Therefore, we propose that surfing adaption led to extensive multidrug adaptive resistance as a result of the collective dysregulation of diverse genes.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Locomoción/fisiología , Mucinas/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Aminoglicósidos/farmacología , Carbapenémicos/farmacología , Pruebas Antimicrobianas de Difusión por Disco , Fluoroquinolonas/farmacología , Humanos , Polimixinas/farmacología , Pseudomonas aeruginosa/genética
7.
Infect Immun ; 82(3): 1256-67, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24379284

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that is a major cause of respiratory tract and other nosocomial infections. The sensor kinase CbrA is a central regulator of carbon and nitrogen metabolism and in vitro also regulates virulence-related processes in P. aeruginosa. Here, we investigated the role of CbrA in two murine models of infection. In both peritoneal infections in leukopenic mice and lung infection models, the cbrA mutant was less virulent since substantially larger numbers of cbrA mutant bacteria were required to cause the same level of infection as wild-type or complemented bacteria. In contrast, in the chronic rat lung model the cbrA mutant grew and persisted as well as the wild type, indicating that the decrease of in vivo virulence of the cbrA mutant did not result from growth deficiencies on particular carbon substrates observed in vitro. In addition, a mutant in the cognate response regulator CbrB showed no defect in virulence in the peritoneal infection model, ruling out the involvement of certain alterations of virulence properties in the cbrA mutant including defective swarming motility, increased biofilm formation, and cytotoxicity, since these alterations are controlled through CbrB. Further investigations indicated that the mutant was more susceptible to uptake by phagocytes in vitro, resulting in greater overall bacterial killing. Consistent with the virulence defect, it took a smaller number of Dictyostelium discoideum amoebae to kill the cbrA mutant than to kill the wild type. Transcriptional analysis of the cbrA mutant during D. discoideum infection led to the conclusion that CbrA played an important role in the iron metabolism, protection of P. aeruginosa against oxidative stress, and the regulation of certain virulence factors.


Asunto(s)
Proteínas Bacterianas/genética , Infecciones por Pseudomonas/genética , Pseudomonas aeruginosa/genética , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/microbiología , Factores de Transcripción/genética , Virulencia/genética , Animales , Proteínas Bacterianas/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Dictyostelium/microbiología , Femenino , Humanos , Pulmón/metabolismo , Pulmón/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Neutrófilos/metabolismo , Neutrófilos/microbiología , Fagocitos/metabolismo , Fagocitos/microbiología , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/metabolismo , Ratas , Ratas Sprague-Dawley , Infecciones del Sistema Respiratorio/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
8.
BMC Microbiol ; 13: 77, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23570569

RESUMEN

BACKGROUND: Pseudomonas aeruginosa is an important opportunistic human pathogen and is extremely difficult to treat due to its high intrinsic and adaptive antibiotic resistance, ability to form biofilms in chronic infections and broad arsenal of virulence factors, which are finely regulated. TypA is a GTPase that has recently been identified to modulate virulence in enteric Gram-negative pathogens. RESULTS: Here, we demonstrate that mutation of typA in P. aeruginosa resulted in reduced virulence in phagocytic amoebae and human macrophage models of infection. In addition, the typA mutant was attenuated in rapid cell attachment to surfaces and biofilm formation, and exhibited reduced antibiotic resistance to ß-lactam, tetracycline and antimicrobial peptide antibiotics. Quantitative RT-PCR revealed the down-regulation, in a typA mutant, of important virulence-related genes such as those involved in regulation and assembly of the Type III secretion system, consistent with the observed phenotypes and role in virulence of P. aeruginosa. CONCLUSIONS: These data suggest that TypA is a newly identified modulator of pathogenesis in P. aeruginosa and is involved in multiple virulence-related characteristics.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana , GTP Fosfohidrolasas/metabolismo , Pseudomonas aeruginosa/enzimología , Factores de Virulencia/metabolismo , Amoeba/microbiología , Adhesión Bacteriana , Células Cultivadas , Endocitosis , GTP Fosfohidrolasas/genética , Perfilación de la Expresión Génica , Humanos , Macrófagos/microbiología , Mutación , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Virulencia/genética
9.
J Opioid Manag ; 19(4): 285-289, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37644786

RESUMEN

OBJECTIVE: To assess knowledge and attitudes toward opioids and buprenorphine (BUP) of patients with cancer. DESIGN: Single-site, single-intervention telephone survey of patients under palliative care at the cancer center. OUTCOMES: Forty percent of the participants recognized the word "buprenorphine," and 28 percent recognized BUP indication for addiction treatment. Four percent addressed potential BUP misuse. None recognized BUP indication for pain. Seventy-one percent were not worried about addiction or dependency while using opioids to treat their cancer-related-pain, and 73 percent were not worried about being stigmatized in the healthcare setting about their pain regimens. Patients on opioids for less than 3 months were most strongly correlated with the fear of addiction and stigma. CONCLUSION: This study identifies patients' knowledge gap regarding BUP products for pain, which gives professionals the opportunity to provide education. This study identified that patients are most worried early on about addiction and stigma when using opioids.


Asunto(s)
Buprenorfina , Neoplasias , Trastornos Relacionados con Opioides , Humanos , Buprenorfina/efectos adversos , Analgésicos Opioides/efectos adversos , Trastornos Relacionados con Opioides/tratamiento farmacológico , Resultado del Tratamiento , Dolor/tratamiento farmacológico , Antagonistas de Narcóticos/uso terapéutico , Neoplasias/tratamiento farmacológico
10.
Life Sci Alliance ; 6(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36977592

RESUMEN

Staphylococcus aureus causes severe infections such as pneumonia and sepsis depending on the pore-forming toxin Panton-Valentine leukocidin (PVL). PVL kills and induces inflammation in macrophages and other myeloid cells by interacting with the human cell surface receptor, complement 5a receptor 1 (C5aR1). C5aR1 expression is tighly regulated and may thus modulate PVL activity, although the mechanisms involved remain incompletely understood. Here, we used a genome-wide CRISPR/Cas9 screen and identified F-box protein 11 (FBXO11), an E3 ubiquitin ligase complex member, to promote PVL toxicity. Genetic deletion of FBXO11 reduced the expression of C5aR1 at the mRNA level, whereas ectopic expression of C5aR1 in FBXO11-/- macrophages, or priming with LPS, restored C5aR1 expression and thereby PVL toxicity. In addition to promoting PVL-mediated killing, FBXO11 dampens secretion of IL-1ß after NLRP3 activation in response to bacterial toxins by reducing mRNA levels in a BCL-6-dependent and BCL-6-independent manner. Overall, these findings highlight that FBXO11 regulates C5aR1 and IL-1ß expression and controls macrophage cell death and inflammation following PVL exposure.


Asunto(s)
Toxinas Bacterianas , Proteínas F-Box , Humanos , Neutrófilos/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Exotoxinas/toxicidad , Inflamación/genética , Inflamación/metabolismo , Macrófagos/metabolismo , Muerte Celular/genética , Leucocidinas/farmacología , Leucocidinas/toxicidad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo
11.
Cell Mol Life Sci ; 68(13): 2161-76, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21573784

RESUMEN

With the rapid rise in the emergence of bacterial strains resistant to multiple classes of antimicrobial agents, there is an urgent need to develop novel antimicrobial therapies to combat these pathogens. Cationic host defence peptides (HDPs) and synthetic derivatives termed innate defence regulators (IDRs) represent a promising alternative approach in the treatment of microbial-related diseases. Cationic HDPs (also termed antimicrobial peptides) have emerged from their origins as nature's antibiotics and are widely distributed in organisms from insects to plants to mammals and non-mammalian vertebrates. Although their original and primary function was proposed to be direct antimicrobial activity against bacteria, fungi, parasites and/or viruses, cationic HDPs are becoming increasingly recognized as multifunctional mediators, with both antimicrobial activity and diverse immunomodulatory properties. Here we provide an overview of the antimicrobial and immunomodulatory activities of cationic HDPs, and discuss their potential application as beneficial therapeutics in overcoming infectious diseases.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/inmunología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Inmunidad Innata , Péptidos Catiónicos Antimicrobianos/química , Interacciones Huésped-Patógeno/inmunología , Humanos , Factores Inmunológicos/química , Factores Inmunológicos/inmunología , Factores Inmunológicos/uso terapéutico , Inmunomodulación
12.
J Bacteriol ; 193(4): 918-31, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21169488

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that possesses a large arsenal of virulence factors enabling the pathogen to cause serious infections in immunocompromised patients, burn victims, and cystic fibrosis patients. CbrA is a sensor kinase that has previously been implied to play a role with its cognate response regulator CbrB in the metabolic regulation of carbon and nitrogen utilization in P. aeruginosa. Here it is demonstrated that CbrA and CbrB play an important role in various virulence and virulence-related processes of the bacteria, including swarming, biofilm formation, cytotoxicity, and antibiotic resistance. The cbrA deletion mutant was completely unable to swarm while exhibiting an increase in biofilm formation, supporting the inverse regulation of swarming and biofilm formation in P. aeruginosa. The cbrA mutant also exhibited increased cytotoxicity to human lung epithelial cells as early as 4 and 6 h postinfection. Furthermore, the cbrA mutant demonstrated increased resistance toward a variety of clinically important antibiotics, including polymyxin B, ciprofloxacin, and tobramycin. Microarray analysis revealed that under swarming conditions, CbrA regulated the expression of many genes, including phoPQ, pmrAB, arnBCADTEF, dnaK, and pvdQ, consistent with the antibiotic resistance and swarming impairment phenotypes of the cbrA mutant. Phenotypic and real-time quantitative PCR (RT-qPCR) analyses of a PA14 cbrB mutant suggested that CbrA may be modulating swarming, biofilm formation, and cytotoxicity via CbrB and that the CrcZ small RNA is likely downstream of this two-component regulator. However, as CbrB did not have a resistance phenotype, CbrA likely modulates antibiotic resistance in a manner independent of CbrB.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Genes Reguladores , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/patogenicidad , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Biopelículas , Línea Celular , Humanos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Factores de Transcripción/genética
13.
J Infect ; 83(1): 92-95, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33895227

RESUMEN

OBJECTIVES: mask-wearing outside the home has been almost universal in Hong Kong since late January 2020 with very high compliance. Nevertheless, community spread of COVID-19 has still occurred. We aimed to assess the settings where COVID-19 transmission occurred and determine the fraction of transmission events that occurred in settings where masks are not usually worn. METHODS: we reviewed detailed information provided by the Hong Kong Department of Health on local COVID-19 cases diagnosed up to 30 September 2020 to determine the most likely settings in which transmission occurred. We classified them in probably mask-on or mask-of and compared the prevalence of asymptomatic infections in these settings. RESULTS: among the 2425 cases (65.3%, 2425/3711) with information on transmission setting, 77.6% of the transmission occurred in household and social settings where face masks are not usually worn. Infections that occurred in mask-on settings were more likely to be asymptomatic (adjusted odds ratio 1.33; 95% confidence interval: 1.04, 1.68). CONCLUSIONS: we conclude that universal mask-wearing can reduce transmission, but transmission can continue to occur in settings where face masks are not usually worn. The higher proportion of asymptomatic cases in mask-on settings could be related to a milder disease presentation or earlier case detection.


Asunto(s)
COVID-19 , Hong Kong/epidemiología , Humanos , Máscaras , SARS-CoV-2
14.
Front Microbiol ; 11: 773, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431676

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that is a major cause of nosocomial and chronic infections contributing to morbidity and mortality in cystic fibrosis patients. One of the reasons for its success as a pathogen is its ability to adapt to a broad range of circumstances. Here, we show the involvement of the general nitrogen regulator NtrBC, which is structurally conserved but functionally diverse across species, in pathogenic and adaptive states of P. aeruginosa. The role of NtrB and NtrC was examined in progressive or chronic infections, which revealed that mutants (ΔntrB, ΔntrC, and ΔntrBC) were reduced in their ability to invade and cause damage in a high-density abscess model in vivo. Progressive infections were established with mutants in the highly virulent PA14 genetic background, whereas chronic infections were established with mutants in the less virulent clinical isolate LESB58 genetic background. Characterization of adaptive lifestyles in vitro confirmed that the double ΔntrBC mutant demonstrated >40% inhibition of biofilm formation, a nearly complete inhibition of swarming motility, and a modest decrease and altered surfing motility colony appearance; with the exception of swarming, single mutants generally had more subtle or no changes. Transcriptional profiles of deletion mutants under swarming conditions were defined using RNA-Seq and unveiled dysregulated expression of hundreds of genes implicated in virulence in PA14 and LESB58 chronic lung infections, as well as carbon and nitrogen metabolism. Thus, transcriptional profiles were validated by testing responsiveness of mutants to several key intermediates of central metabolic pathways. These results indicate that NtrBC is a global regulatory system involved in both pathological and physiological processes relevant to the success of Pseudomonas in high-density infection.

15.
J Exp Med ; 217(2)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31819956

RESUMEN

Loss of IL-10 signaling in macrophages (Mφs) leads to inflammatory bowel disease (IBD). Induced pluripotent stem cells (iPSCs) were generated from an infantile-onset IBD patient lacking a functional IL10RB gene. Mφs differentiated from IL-10RB-/- iPSCs lacked IL-10RB mRNA expression, were unable to phosphorylate STAT3, and failed to reduce LPS induced inflammatory cytokines in the presence of exogenous IL-10. IL-10RB-/- Mφs exhibited a striking defect in their ability to kill Salmonella enterica serovar Typhimurium, which was rescuable after experimentally introducing functional copies of the IL10RB gene. Genes involved in synthesis and receptor pathways for eicosanoid prostaglandin E2 (PGE2) were more highly induced in IL-10RB-/- Mφs, and these Mφs produced higher amounts of PGE2 after LPS stimulation compared with controls. Furthermore, pharmacological inhibition of PGE2 synthesis and PGE2 receptor blockade enhanced bacterial killing in Mφs. These results identify a regulatory interaction between IL-10 and PGE2, dysregulation of which may drive aberrant Mφ activation and impaired host defense contributing to IBD pathogenesis.


Asunto(s)
Dinoprostona/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Subunidad beta del Receptor de Interleucina-10/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Salmonella typhimurium/metabolismo , Transducción de Señal/genética , Diferenciación Celular/genética , Células Cultivadas , Dinoprostona/antagonistas & inhibidores , Femenino , Técnicas de Inactivación de Genes , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Subunidad alfa del Receptor de Interleucina-10/genética , Subunidad beta del Receptor de Interleucina-10/genética , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética , Macrófagos/efectos de los fármacos , Mutación , Fosforilación/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
16.
J Leukoc Biol ; 108(3): 967-981, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32531864

RESUMEN

Staphylococcus aureus causes necrotizing pneumonia by secreting toxins such as leukocidins that target front-line immune cells. The mechanism by which leukocidins kill innate immune cells and trigger inflammation during S. aureus lung infection, however, remains unresolved. Here, we explored human-induced pluripotent stem cell-derived macrophages (hiPSC-dMs) to study the interaction of the leukocidins Panton-Valentine leukocidin (PVL) and LukAB with lung macrophages, which are the initial leukocidin targets during S. aureus lung invasion. hiPSC-dMs were susceptible to the leukocidins PVL and LukAB and both leukocidins triggered NLPR3 inflammasome activation resulting in IL-1ß secretion. hiPSC-dM cell death after LukAB exposure, however, was only temporarily dependent of NLRP3, although NLRP3 triggered marked cell death after PVL treatment. CRISPR/Cas9-mediated deletion of the PVL receptor, C5aR1, protected hiPSC-dMs from PVL cytotoxicity, despite the expression of other leukocidin receptors, such as CD45. PVL-deficient S. aureus had reduced ability to induce lung IL-1ß levels in human C5aR1 knock-in mice. Unexpectedly, inhibiting NLRP3 activity resulted in increased wild-type S. aureus lung burdens. Our findings suggest that NLRP3 induces macrophage death and IL-1ß secretion after PVL exposure and controls S. aureus lung burdens.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/antagonistas & inhibidores , Exotoxinas/antagonistas & inhibidores , Células Madre Pluripotentes Inducidas/citología , Leucocidinas/antagonistas & inhibidores , Macrófagos/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Receptor de Anafilatoxina C5a/efectos de los fármacos , Staphylococcus aureus , Animales , Antígeno CD11b/inmunología , Sistemas CRISPR-Cas , Diferenciación Celular , Células Cultivadas , Exotoxinas/deficiencia , Técnicas de Sustitución del Gen , Humanos , Interleucina-1beta/metabolismo , Antígenos Comunes de Leucocito/fisiología , Pulmón/inmunología , Pulmón/microbiología , Macrófagos/citología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Fragmentos de Péptidos/inmunología , Neumonía Estafilocócica/inmunología , Subunidades de Proteína , Receptor de Anafilatoxina C5a/deficiencia , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/fisiología , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/fisiología
17.
J Bacteriol ; 191(18): 5592-602, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19592586

RESUMEN

Pseudomonas aeruginosa exhibits swarming motility on semisolid surfaces (0.5 to 0.7% agar). Swarming is a more than just a form of locomotion and represents a complex adaptation resulting in changes in virulence gene expression and antibiotic resistance. In this study, we used a comprehensive P. aeruginosa PA14 transposon mutant library to investigate how the complex swarming adaptation process is regulated. A total of 233 P. aeruginosa PA14 transposon mutants were verified to have alterations in swarming motility. The swarming-associated genes functioned not only in flagellar or type IV pilus biosynthesis but also in processes as diverse as transport, secretion, and metabolism. Thirty-three swarming-deficient and two hyperswarming mutants had transposon insertions in transcriptional regulator genes, including genes encoding two-component sensors and response regulators; 27 of these insertions were newly identified. Of the 25 regulatory mutants whose swarming motility was highly impaired (79 to 97%), only 1 (a PA1458 mutant) had a major defect in swimming, suggesting that this regulator might influence flagellar synthesis or function. Twitching motility, which requires type IV pili, was strongly affected in only two regulatory mutants (pilH and PA2571 mutants) and was moderately affected in three other mutants (algR, ntrB, and nosR mutants). Microarray analyses were performed to compare the gene expression profile of a swarming-deficient PA3587 mutant to that of the wild-type PA14 strain under swarming conditions. PA3587 showed 63% homology to metR, which encodes a regulator of methionine biosynthesis in Escherichia coli. The observed dysregulation in the metR mutant of nine different genes required for swarming motility provided a possible explanation for the swarming-deficient phenotype of this mutant.


Asunto(s)
Proteínas Bacterianas/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/fisiología , Transactivadores/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/genética , Elementos Transponibles de ADN , ADN Bacteriano/genética , Mutagénesis Insercional , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transducción de Señal , Transactivadores/genética
18.
Microbiol Spectr ; 7(2)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30953425

RESUMEN

The rapid development of genomics and other "-omics" approaches has significantly impacted how we have investigated host-pathogen interactions since the turn of the millennium. Technologies such as next-generation sequencing, stem cell biology, and high-throughput proteomics have transformed the scale and sensitivity with which we interrogate biological samples. These approaches are impacting experimental design in the laboratory and transforming clinical management in health care systems. Here, we review this area from the perspective of research on bacterial pathogens.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Biología de Sistemas/métodos , Animales , Manejo de la Enfermedad , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Proteómica/métodos , Células Madre
19.
mBio ; 10(5)2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31594818

RESUMEN

A genome-scale CRISPR knockout library screen of THP-1 human macrophages was performed to identify loss-of-function mutations conferring resistance to Salmonella uptake. The screen identified 183 candidate genes, from which 14 representative genes involved in actin dynamics (ACTR3, ARPC4, CAPZB, TOR3A, CYFIP2, CTTN, and NHLRC2), glycosaminoglycan metabolism (B3GNT1), receptor signaling (PDGFB and CD27), lipid raft formation (CLTCL1), calcium transport (ATP2A2 and ITPR3), and cholesterol metabolism (HMGCR) were analyzed further. For some of these pathways, known chemical inhibitors could replicate the Salmonella resistance phenotype, indicating their potential as targets for host-directed therapy. The screen indicated a role for the relatively uncharacterized gene NHLRC2 in both Salmonella invasion and macrophage differentiation. Upon differentiation, NHLRC2 mutant macrophages were hyperinflammatory and did not exhibit characteristics typical of macrophages, including atypical morphology and inability to interact and phagocytose bacteria/particles. Immunoprecipitation confirmed an interaction of NHLRC2 with FRYL, EIF2AK2, and KLHL13.IMPORTANCESalmonella exploits macrophages to gain access to the lymphatic system and bloodstream to lead to local and potentially systemic infections. With an increasing number of antibiotic-resistant isolates identified in humans, Salmonella infections have become major threats to public health. Therefore, there is an urgent need to identify alternative approaches to anti-infective therapy, including host-directed therapies. In this study, we used a simple genome-wide screen to identify 183 candidate host factors in macrophages that can confer resistance to Salmonella infection. These factors may be potential therapeutic targets against Salmonella infections.


Asunto(s)
Resistencia a la Enfermedad , Técnicas de Inactivación de Genes , Pruebas Genéticas , Factores Celulares Derivados del Huésped/inmunología , Macrófagos/inmunología , Salmonella/inmunología , Endocitosis , Factores Celulares Derivados del Huésped/genética , Humanos , Macrófagos/microbiología , Modelos Teóricos , Salmonella/crecimiento & desarrollo , Infecciones por Salmonella/inmunología , Células THP-1
20.
AIMS Microbiol ; 4(1): 173-191, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31294209

RESUMEN

The rapid adaptation of the opportunistic bacterial pathogen Pseudomonas aeruginosa to various growth modes and environmental conditions is controlled in part through diverse two-component regulatory systems. Some of these systems are well studied, but the majority are poorly characterized, even though it is likely that several of these systems contribute to virulence. Here, we screened all available strain PA14 mutants in 50 sensor kinases, 50 response regulators and 5 hybrid sensor/regulators, for contributions to cytotoxicity against cultured human bronchial epithelial cells, as assessed by the release of cytosolic lactate dehydrogenase. This enabled the identification of 8 response regulators and 3 sensor kinases that caused substantial decreases in cytotoxicity, and 5 response regulators and 8 sensor kinases that significantly increased cytotoxicity by 15-58% or more. These regulators were additionally involved in motility, adherence, type 3 secretion, production of cytotoxins, and the development of biofilms. Here we investigated in more detail the roles of FleSR, PilSR and WspR. Not all cognate pairs contributed to cytotoxicity (e.g. PhoPQ, PilSR) in the same way and some differences could be detected between the same mutants in PAO1 and PA14 strain backgrounds (e.g. FleSR, PhoPQ). This study highlights the potential importance of these regulators and their downstream targets on pathogenesis and demonstrates that cytotoxicity can be regulated by several systems and that their contributions are partly dependent on strain background.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA