Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(2): e104450, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33258176

RESUMEN

A prevalent model of Alzheimer's disease (AD) pathogenesis postulates the generation of neurotoxic fragments derived from the amyloid precursor protein (APP) after its internalization to endocytic compartments. The molecular pathways that regulate APP internalization and intracellular trafficking in neurons are incompletely understood. Here, we report that 5xFAD mice, an animal model of AD, expressing signaling-deficient variants of the p75 neurotrophin receptor (p75NTR ) show greater neuroprotection from AD neuropathology than animals lacking this receptor. p75NTR knock-in mice lacking the death domain or transmembrane Cys259 showed lower levels of Aß species, amyloid plaque burden, gliosis, mitochondrial stress, and neurite dystrophy than global knock-outs. Strikingly, long-term synaptic plasticity and memory, which are completely disrupted in 5xFAD mice, were fully recovered in the knock-in mice. Mechanistically, we found that p75NTR interacts with APP at the plasma membrane and regulates its internalization and intracellular trafficking in hippocampal neurons. Inactive p75NTR variants internalized considerably slower than wild-type p75NTR and showed increased association with the recycling pathway, thereby reducing APP internalization and co-localization with BACE1, the critical protease for generation of neurotoxic APP fragments, favoring non-amyloidogenic APP cleavage. These results reveal a novel pathway that directly and specifically regulates APP internalization, amyloidogenic processing, and disease progression, and suggest that inhibitors targeting the p75NTR transmembrane domain may be an effective therapeutic strategy in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas/fisiología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Línea Celular , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Células HEK293 , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuritas/metabolismo , Neuronas/metabolismo , Placa Amiloide/metabolismo , Receptores de Muerte Celular/metabolismo
2.
Glia ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829008

RESUMEN

As one of the top causes of blindness worldwide, glaucoma leads to diverse optic neuropathies such as degeneration of retinal ganglion cells (RGCs). It is widely accepted that the level of intraocular pressure (IOP) is a major risk factor in human glaucoma, and reduction of IOP level is the principally most well-known method to prevent cell death of RGCs. However, clinical studies show that lowering IOP fails to prevent RGC degeneration in the progression of glaucoma. Thus, a comprehensive understanding of glaucoma pathological process is required for developing new therapeutic strategies. In this study, we provide functional and histological evidence showing that optic nerve defects occurred before retina damage in an ocular hypertension glaucoma mouse model, in which oligodendroglial lineage cells were responsible for the subsequent neuropathology. By treatment with clemastine, an Food and Drug Administration (FDA)-approved first-generation antihistamine medicine, we demonstrate that the optic nerve and retina damages were attenuated via promoting oligodendrocyte precursor cell (OPC) differentiation and enhancing remyelination. Taken together, our results reveal the timeline of the optic neuropathies in glaucoma and highlight the potential role of oligodendroglial lineage cells playing in its treatment. Clemastine may be used in future clinical applications for demyelination-associated glaucoma.

3.
Ann Neurol ; 94(1): 163-181, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36966488

RESUMEN

OBJECTIVE: Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease that leads to severe disability. A large proportion of NMOSD patients are seropositive for aquaporin-4 autoantibodies (AQP4-IgG, named as NMO-IgG) targeting AQP4, which is selectively expressed on astrocytes in the central nervous system. This study tests the hypothesis that in response to NMO-IgG, the pathogenic astrocyte-derived exosomes are released and injure the neighboring cells. METHODS: IgG purified from serum of either NMOSD patients or healthy controls was used to generate astrocyte-derived exosomes (AST-ExosNMO vs AST-ExosCON ) in cultured rat astrocytes. The exosomes were respectively delivered to cultured rat oligodendrocytes in vitro, tissue culture of rat optic nerve ex vivo, and rat optic nerve in vivo to evaluate the pathogenic roles of AST-ExosNMO . The microRNA (miRNA) sequencing of AST-Exos and verification were performed to identify the key pathogenic miRNA. The custom-designed adeno-associated virus (AAV) antagonizing the key miRNA was evaluated for its therapeutic effects in vivo. Moreover, the serum levels of the key exosomal miRNA were measured between NMOSD patients and healthy controls. RESULTS: AST-ExosNMO led to notable demyelination in both cultured oligodendrocytes and optic nerve tissue. Exosomal miR-129-2-3p was identified as the key miRNA mediating the demyelinating pathogenesis via downstream target gene SMAD3. AAV antagonizing miR-129-2-3p protected against demyelination in an NMOSD rodent model. The serum exosomal miR-129-2-3p level was significantly elevated in NMOSD patients and correlated with disease severity. INTERPRETATION: Astrocytes targeted by NMO-IgG release pathogenic exosomes that could potentially be used as therapeutic targets or disease monitoring biomarkers in NMOSD. ANN NEUROL 2023;94:163-181.


Asunto(s)
Exosomas , MicroARNs , Neuromielitis Óptica , Ratas , Animales , Astrocitos/patología , Acuaporina 4 , Roedores/genética , Inmunoglobulina G , Autoanticuerpos/farmacología
4.
Gastroenterology ; 162(1): 179-192.e11, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34425092

RESUMEN

BACKGROUND AND AIMS: The enteric nervous system, which regulates many gastrointestinal functions, is derived from neural crest cells (NCCs). Defective NCC migration during embryonic development may lead to enteric neuropathies such as Hirschsprung's disease (hindgut aganglionosis). Sox10 is known to be essential for cell migration but downstream molecular events regulating early NCC migration have not been fully elucidated. This study aimed to determine how Sox10 regulates migration of sacral NCCs toward the hindgut using Dominant megacolon mice, an animal model of Hirschsprung's disease with a Sox10 mutation. METHODS: We used the following: time-lapse live cell imaging to determine the migration defects of mutant sacral NCCs; genome-wide microarrays, site-directed mutagenesis, and whole embryo culture to identify Sox10 targets; and liquid chromatography and tandem mass spectrometry to ascertain downstream effectors of Sox10. RESULTS: Sacral NCCs exhibited retarded migration to the distal hindgut in Sox10-null embryos with simultaneous down-regulated expression of cadherin-19 (Cdh19). Sox10 was found to bind directly to the Cdh19 promoter. Cdh19 knockdown resulted in retarded sacral NCC migration in vitro and ex vivo, whereas re-expression of Cdh19 partially rescued the retarded migration of mutant sacral NCCs in vitro. Cdh19 formed cadherin-catenin complexes, which then bound to filamentous actin of the cytoskeleton during cell migration. CONCLUSIONS: Cdh19 is a direct target of Sox10 during early sacral NCC migration toward the hindgut and forms cadherin-catenin complexes which interact with the cytoskeleton in migrating cells. Elucidation of this novel molecular pathway helps to provide insights into the pathogenesis of enteric nervous system developmental defects.


Asunto(s)
Cadherinas/metabolismo , Movimiento Celular , Sistema Nervioso Entérico/metabolismo , Enfermedad de Hirschsprung/metabolismo , Cresta Neural/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Factores de Transcripción SOXE/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Animales , Cadherinas/genética , Células Cultivadas , Modelos Animales de Enfermedad , Técnicas de Cultivo de Embriones , Sistema Nervioso Entérico/anomalías , Regulación del Desarrollo de la Expresión Génica , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/patología , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Cresta Neural/anomalías , Células-Madre Neurales/patología , Unión Proteica , Factores de Transcripción SOXE/genética , Transducción de Señal , Factores de Tiempo
5.
Mol Psychiatry ; 27(12): 5154-5166, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36131044

RESUMEN

Although the link of white matter to pathophysiology of schizophrenia is documented, loss of myelin is not detected in patients at the early stages of the disease, suggesting that pathological evolution of schizophrenia may occur before significant myelin loss. Disrupted-in-schizophrenia-1 (DISC1) protein is highly expressed in oligodendrocyte precursor cells (OPCs) and regulates their maturation. Recently, DISC1-Δ3, a major DISC1 variant that lacks exon 3, has been identified in schizophrenia patients, although its pathological significance remains unknown. In this study, we detected in schizophrenia patients a previously unidentified pathological phenotype of OPCs exhibiting excessive branching. We replicated this phenotype by generating a mouse strain expressing DISC1-Δ3 gene in OPCs. We further demonstrated that pathological OPCs, rather than myelin defects, drive the onset of schizophrenic phenotype by hyperactivating OPCs' Wnt/ß-catenin pathway, which consequently upregulates Wnt Inhibitory Factor 1 (Wif1), leading to the aberrant synaptic formation and neuronal activity. Suppressing Wif1 in OPCs rescues synaptic loss and behavioral disorders in DISC1-Δ3 mice. Our findings reveal the pathogenetic role of OPC-specific DISC1-Δ3 variant in the onset of schizophrenia and highlight the therapeutic potential of Wif1 as an alternative target for the treatment of this disease.


Asunto(s)
Células Precursoras de Oligodendrocitos , Esquizofrenia , Animales , Humanos , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/genética , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Oligodendroglía/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/patología , Modelos Animales de Enfermedad
6.
Brain ; 145(12): 4474-4488, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35788280

RESUMEN

Alzheimer's disease is a neurodegenerative disorder that causes age-dependent neurological and cognitive declines. The treatments for Alzheimer's disease pose a significant challenge, because the mechanisms of disease are not being fully understood. Malfunction of the blood-brain barrier is increasingly recognized as a major contributor to the pathophysiology of Alzheimer's disease, especially at the early stages of the disease. However, the underlying mechanisms remain poorly characterized, while few molecules can directly target and improve blood-brain barrier function in the context of Alzheimer's disease. Here, we showed dysfunctional blood-brain barrier in patients with Alzheimer's disease reflected by perivascular accumulation of blood-derived fibrinogen in the hippocampus and cortex, accompanied by decreased tight junction proteins Claudin-5 and glucose transporter Glut-1 in the brain endothelial cells. In the APPswe/PS1dE9 (APP/PS1) mouse model of Alzheimer's disease, blood-brain barrier dysfunction started at 4 months of age and became severe at 9 months of age. In the cerebral microvessels of APP/PS1 mice and amyloid-ß-treated brain endothelial cells, we found suppressed Wnt/ß-catenin signalling triggered by an increase of GSK3ß activation, but not an inhibition of the AKT pathway or switching to the Wnt/planar cell polarity pathway. Furthermore, using our newly developed optogenetic tool for controlled regulation of LRP6 (upstream regulator of the Wnt signalling) to activate Wnt/ß-catenin pathway, blood-brain barrier malfunction was restored by preventing amyloid-ß-induced brain endothelial cells impairments and promoting the barrier repair. In conclusion, targeting LRP6 in the Wnt/ß-catenin pathway in the brain endothelium can alleviate blood-brain barrier malfunction induced by amyloid-ß, which may be a potential treatment strategy for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , beta Catenina , Péptidos beta-Amiloides/metabolismo , Vía de Señalización Wnt , Modelos Animales de Enfermedad , Ratones Transgénicos
7.
Ecotoxicol Environ Saf ; 238: 113589, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35525116

RESUMEN

Air pollution remains one of the major health threats around the world. Compared to adults, foetuses and infants are more vulnerable to the effects of environmental toxins. Maternal exposure to air pollution causes several adverse birth outcomes and may lead to life-long health consequences. Given that a healthy intrauterine environment is a critical factor for supporting normal foetal brain development, there is a need to understand how prenatal exposure to air pollution affects brain health and results in neurological dysfunction. This review summarised the current knowledge on the adverse effects of prenatal air pollution exposure on early life neurodevelopment and subsequent impairment of cognition and behaviour in childhood, as well as the potential of early-onset neurodegeneration. While inflammation, oxidative stress, and endoplasmic reticulum are closely involved in the physiological response, sex differences also occur. In general, males are more susceptible than females to the adverse effect of in-utero air pollution exposure. Considering the evidence provided in this review and the rising concerns of global air pollution, any efforts to reduce pollutant emission or exposure will be protective for the next generation.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Cognición , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Lactante , Masculino , Exposición Materna/efectos adversos , Material Particulado/toxicidad , Embarazo
8.
Glia ; 69(7): 1709-1722, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33660902

RESUMEN

Oligodendroglial lineage cells go through a series of morphological changes before myelination. Prior to myelination, cell processes and membrane structures enlarge by approximately 7,000 times, which is required to support axonal wrapping and myelin segment formation. Failure of these processes leads to maldevelopment and impaired myelination. Quetiapine, an atypical antipsychotic drug, was proved to promote oligodendroglial differentiation and (re)myelination, pending detailed effects and regulatory mechanism. In this study, we showed that quetiapine promotes morphological maturation of oligodendroglial lineage cells and myelin segment formation, and a short-term quetiapine treatment is sufficient to induce these changes. To uncover the underlying mechanism, we examined the effect of quetiapine on the Oligodendrocyte transcription factor 1 (Olig1). We found that quetiapine upregulates Olig1 expression level and promotes nuclear Olig1 translocation to the cytosol, where it functions not as a transcription modulator, but in a way that highly correlates with oligodendrocyte morphological transformation. In addition, quetiapine treatment reverses the negative regulatory effect of the Olig1-regulated G protein-coupled receptor 17 (GPR17) on oligodendroglial morphological maturation. Our results demonstrate that quetiapine enhances oligodendroglial differentiation and myelination by promoting cell morphological transformation. This would shed light on the orchestration of oligodendroglia developmental mechanisms, and provides new targets for further therapeutic research.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Oligodendroglía , Axones/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Fumarato de Quetiapina/metabolismo , Fumarato de Quetiapina/farmacología
9.
Front Neuroendocrinol ; 59: 100857, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32781194

RESUMEN

The blood-brain barrier (BBB) tightly controls the molecular exchange between the brain parenchyma and blood. Accumulated evidence from transgenic animal Alzheimer's disease (AD) models and human AD patients have demonstrated that BBB dysfunction is a major player in AD pathology. In this review, we discuss the role of the BBB in maintaining brain integrity and how this is mediated by crosstalk between BBB-associated cells within the neurovascular unit (NVU). We then discuss the role of the NVU, in particular its endothelial cell, pericyte, and glial cell constituents, in AD pathogenesis. The effect of substances released by the neuroendocrine system in modulating BBB function and AD pathogenesis is also discussed. We perform a systematic review of currently available AD treatments specifically targeting pericytes and BBB glial cells. In summary, this review provides a comprehensive overview of BBB dysfunction in AD and a new perspective on the development of therapeutics for AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Barrera Hematoencefálica/patología , Encéfalo/patología , Pericitos/patología , Animales , Humanos
10.
J Hepatol ; 74(5): 1176-1187, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33217494

RESUMEN

BACKGROUND & AIMS: Liver fibrosis is a wound healing response that arises from various aetiologies. The intermediate filament protein Nestin has been reported to participate in maintaining tissue homeostasis during wound healing responses. However, little is known about the role Nestin plays in liver fibrosis. This study investigated the function and precise regulatory network of Nestin during liver fibrosis. METHODS: Nestin expression was assessed via immunostaining and quantitative real-time PCR (qPCR) in fibrotic/cirrhotic samples. The induction of Nestin expression by transforming growth factor beta (TGFß)-Smad2/3 signalling was investigated through luciferase reporter assays. The functional role of Nestin in hepatic stellate cells (HSCs) was investigated by examining the pathway activity of profibrogenic TGFß-Smad2/3 signalling and degradation of TGFß receptor I (TßRI) after interfering with Nestin. The in vivo effects of knocking down Nestin were examined with an adeno-associated virus vector (serotype 6, AAV6) carrying short-hairpin RNA targeting Nestin in fibrotic mouse models. RESULTS: Nestin was mainly expressed in activated HSCs and increased with the progression of liver fibrosis. The profibrogenic pathway TGFß-Smad2/3 induced Nestin expression directly. Knocking down Nestin promoted caveolin 1-mediated TßRI degradation, resulting in TGFß-Smad2/3 pathway impairment and reduced fibrosis marker expression in HSCs. In AAV6-treated murine fibrotic models, knocking down Nestin resulted in decreased levels of inflammatory infiltration, hepatocellular damage, and a reduced degree of fibrosis. CONCLUSION: The expression of Nestin in HSCs was induced by TGFß and positively correlated with the degree of liver fibrosis. Knockdown of Nestin decreased activation of the TGFß pathway and alleviated liver fibrosis both in vitro and in vivo. Our data demonstrate a novel role of Nestin in controlling HSC activation in liver fibrosis. LAY SUMMARY: Liver fibrosis has various aetiologies but represents a common process in chronic liver diseases that is associated with high morbidity and mortality. Herein, we demonstrate that the intermediate filament protein Nestin plays an essential profibrogenic role in liver fibrosis by forming a positive feedback loop with the TGFß-Smad2/3 pathway, providing a potential therapeutic target for the treatment of liver fibrosis.


Asunto(s)
Cirrosis Hepática , Nestina/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Caveolina 1/metabolismo , Descubrimiento de Drogas , Perfilación de la Expresión Génica/métodos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
11.
Brain Behav Immun ; 92: 57-66, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33221488

RESUMEN

Tobacco smoking and high-fat diet (HFD) independently impair short-term memory. E-cigarettes produce e-vapour containing flavourings and nicotine. Here, we investigated whether e-vapour inhalation interacts with HFD to affect short-term memory and neural integrity. Balb/c mice (7 weeks, male) were fed a HFD (43% fat, 20 kJ/g) for 16 weeks. In the last 6 weeks, half of the mice were exposed to tobacco-flavoured e-vapour from nicotine-containing (18 mg/L) or nicotine-free (0 mg/L) e-fluids twice daily. Short-term memory function was measured in week 15. HFD alone did not impair memory function, but increased brain phosphorylated (p)-Tau and astrogliosis marker, while neuron and microglia levels were decreased. E-vapour exposure significantly impaired short-term memory function independent of diet and nicotine. Nicotine free e-vapour induced greater changes compared to the nicotine e-vapour and included, increased systemic cytokines, increased brain p-Tau and decreased postsynaptic density protein (PSD)-95 levels in chow-fed mice, and decreased astrogliosis marker, increased microglia and increased glycogen synthase kinase levels in HFD-fed mice. Increased hippocampal apoptosis was also differentially observed in chow and HFD mice. In conclusion, E-vapour exposure impaired short-term memory independent of diet and nicotine, and was correlated to increased systemic inflammation, reduced PSD-95 level and increased astrogliosis in chow-fed mice, but decreased gliosis and increased microglia in HFD-fed mice, indicating the inflammatory nature of e-vapour leading to short term memory impairment.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Animales , Encéfalo , Dieta Alta en Grasa , Masculino , Ratones , Ratones Endogámicos C57BL , Nicotina
12.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681867

RESUMEN

Among millions of sufferers of chronic rhinosinusitis (CRS), the challenge is not only constantly coping with CRS-related symptoms, such as congested nose, sinus pain, and headaches, but also various complications, such as attention difficulties and possible depression. These complications suggest that neural activity in the central nervous system may be altered in those patients, leading to unexpected conditions, such as neurodegeneration in elderly patients. Recently, some studies linked the presence of CRS and cognitive impairments that could further develop into Alzheimer's disease (AD). AD is the leading cause of dementia in the elderly and is characterised by progressive memory loss, cognitive behavioural deficits, and significant personality changes. The microbiome, especially those in the gut, has been recognised as a human organ and plays an important role in the development of various conditions, including AD. However, less attention has been paid to the microbiome in the nasal cavity. Increased nasal inflammatory responses due to CRS may be an initial event that changes local microbiome homeostasis, which may further affect neuronal integrity in the central nervous system resulting in AD. Evidence suggests a potential of ß-amyloid deposition starting in olfactory neurons, which is then expanded from the nasal cavity to the central nervous system. In this paper, we reviewed currently available evidence that suggests this potential mechanism to advise the need to investigate the link between these two conditions.


Asunto(s)
Enfermedad de Alzheimer/microbiología , Nariz/microbiología , Rinitis/complicaciones , Sinusitis/complicaciones , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Enfermedad Crónica , Humanos , Microbiota , Rinitis/microbiología , Rinitis/patología , Sinusitis/microbiología , Sinusitis/patología
13.
Glia ; 68(6): 1201-1212, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31868275

RESUMEN

As the most abundant gap junction protein in the central nervous system (CNS), astrocytic connexin 43 (Cx43) maintains astrocyte network homeostasis, affects oligodendroglial development and participates in CNS pathologies as well as injury progression. However, its role in remyelination is not yet fully understood. To address this issue, we used astrocyte-specific Cx43 conditional knockout (Cx43 cKO) mice generated through the use of a hGFAP-cre promoter, in combination with mice carrying a floxed Cx43 allele that were subjected to lysolecithin so as to induce demyelination. We found no significant difference in the demyelination of the corpus callosum between Cx43 cKO mice and their non-cre littermate controls, while the remyelination process in Cx43 cKO mice was accelerated. Moreover, an increased number of mature oligodendrocytes and an unaltered number of oligodendroglial lineage cells were found in Cx43 cKO mouse lesions. This indicates that oligodendrocyte precursor cell (OPC) differentiation was facilitated by astroglial Cx43 depletion as remyelination progressed. Underlying the latter, there was a down-regulated glial activation and modulated local inflammation as well as a reduction of myelin debris in Cx43 cKO mice. Importantly, 2 weeks of orally administrating boldine, a natural alkaloid that blocks Cx hemichannel activity in astrocytes without affecting gap junctional communication, obviously modulated local inflammation and promoted remyelination. Together, the data suggest that the astrocytic Cx43 hemichannel is negatively involved in the remyelination process by favoring local inflammation. Consequently, inhibiting Cx43 hemichannel functionality may be a potential therapeutic approach for demyelinating diseases in the CNS.


Asunto(s)
Astrocitos/metabolismo , Conexina 43/metabolismo , Inflamación/metabolismo , Remielinización/fisiología , Animales , Diferenciación Celular/fisiología , Sistema Nervioso Central/metabolismo , Enfermedades Desmielinizantes/patología , Uniones Comunicantes/metabolismo , Ratones , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo
15.
J Neurosci ; 37(37): 9064-9075, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28821660

RESUMEN

Astrocytes interact dynamically with neurons by modifying synaptic activity and plasticity. This interplay occurs through a process named gliotransmission, meaning that neuroactive molecules are released by astrocytes. Acting as a gliotransmitter, D-serine, a co-agonist of the NMDA receptor at the glycine-binding site, can be released by astrocytes in a calcium [Ca2+]i-dependent manner. A typical feature of astrocytes is their high expression level of connexin43 (Cx43), a protein forming gap junction channels and hemichannels associated with dynamic neuroglial interactions. Pharmacological and genetic inhibition of Cx43 hemichannel activity reduced the amplitude of NMDA EPSCs in mouse layer 5 prefrontal cortex pyramidal neurons without affecting AMPA EPSC currents. This reduction of NMDA EPSCs was rescued by addition of D-serine in the extracellular medium. LTP of NMDA and AMPA EPSCs after high-frequency stimulation was reduced by prior inhibition of Cx43 hemichannel activity. Inactivation of D-serine synthesis within the astroglial network resulted in the reduction of NMDA EPSCs, which was rescued by adding extracellular D-serine. We showed that the activity of Cx43 hemichannels recorded in cultured astrocytes was [Ca2+]I dependent. Accordingly, in acute cortical slices, clamping [Ca2+]i at a low level in astroglial network resulted in an inhibition of NMDA EPSC potentiation that was rescued by adding extracellular D-serine. This work demonstrates that astroglial Cx43 hemichannel activity is associated with D-serine release. This process, occurring by direct permeation of D-serine through hemichannels or indirectly by Ca2+ entry and activation of other [Ca2+]i-dependent mechanisms results in the modulation of synaptic activity and plasticity.SIGNIFICANCE STATEMENT We recorded neuronal glutamatergic (NMDA and AMPA) responses in prefrontal cortex (PFC) neurons and used pharmacological and genetic interventions to block connexin-mediated hemichannel activity specifically in a glial cell population. For the first time in astrocytes, we demonstrated that hemichannel activity depends on the intracellular calcium concentration and is associated with D-serine release. Blocking hemichannel activity reduced the LTP of these excitatory synaptic currents triggered by high-frequency stimulation. These observations may be particularly relevant in the PFC, where D-serine and its converting enzyme are highly expressed.


Asunto(s)
Astrocitos/fisiología , Señalización del Calcio/fisiología , Conexina 43/metabolismo , Ácido Glutámico/metabolismo , Corteza Prefrontal/fisiología , Serina/metabolismo , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Neurotransmisores/metabolismo
16.
J Cell Sci ; 129(9): 1902-14, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27006115

RESUMEN

Oligodendrocyte precursor cells (OPCs) undergo a series of energy-consuming developmental events; however, the uptake and trafficking pathways for their energy metabolites remain unknown. In the present study, we found that 2-NBDG, a fluorescent glucose analog, can be delivered between astrocytes and oligodendrocytes through connexin-based gap junction channels but cannot be transferred between astrocytes and OPCs. Instead, connexin hemichannel-mediated glucose uptake supports OPC proliferation, and ethidium bromide uptake or increase of 2-NBDG uptake rate is correlated with intracellular Ca(2+) elevation in OPCs, indicating a Ca(2+)-dependent activation of connexin hemichannels. Interestingly, deletion of connexin 43 (Cx43, also known as GJA1) in astrocytes inhibits OPC proliferation by decreasing matrix glucose levels without impacting on OPC hemichannel properties, a process that also occurs in corpus callosum from acute brain slices. Thus, dual functions of connexin-based channels contribute to glucose supply in oligodendroglial lineage, which might pave a new way for energy-metabolism-directed oligodendroglial-targeted therapies.


Asunto(s)
Astrocitos/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Conexina 43/metabolismo , Cuerpo Calloso/metabolismo , Oligodendroglía/metabolismo , Animales , Astrocitos/citología , Conexina 43/genética , Cuerpo Calloso/citología , Glucosa/genética , Glucosa/metabolismo , Ratones , Ratones Noqueados , Oligodendroglía/citología
17.
Glia ; 65(10): 1607-1625, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28703353

RESUMEN

The contribution of reactive gliosis to the pathological phenotype of Alzheimer's disease (AD) opened the way for therapeutic strategies targeting glial cells instead of neurons. In such context, connexin hemichannels were proposed recently as potential targets since neuronal suffering is alleviated when connexin expression is genetically suppressed in astrocytes of a murine model of AD. Here, we show that boldine, an alkaloid from the boldo tree, inhibited hemichannel activity in astrocytes and microglia without affecting gap junctional communication in culture and acute hippocampal slices. Long-term oral administration of boldine in AD mice prevented the increase in glial hemichannel activity, astrocytic Ca2+ signal, ATP and glutamate release and alleviated hippocampal neuronal suffering. These findings highlight the important pathological role of hemichannels in AD mice. The neuroprotective effect of boldine treatment might provide the basis for future pharmacological strategies that target glial hemichannels to reduce neuronal damage in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Aporfinas/farmacología , Aporfinas/uso terapéutico , Conexinas/metabolismo , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Células Cultivadas , Conexinas/genética , Modelos Animales de Enfermedad , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Hipocampo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Neuritas/patología , Neuroglía/metabolismo , Fármacos Neuromusculares Despolarizantes/farmacología , Fármacos Neuromusculares Despolarizantes/uso terapéutico , Neuronas/fisiología , Neurotransmisores/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
18.
J Neurosci ; 35(46): 15339-52, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26586821

RESUMEN

An emergent concept in neurosciences consists in considering brain functions as the product of dynamic interactions between neurons and glial cells, particularly astrocytes. Although the role played by astrocytes in synaptic transmission and plasticity is now largely documented, their contribution to neuronal network activity is only beginning to be appreciated. In mouse olfactory bulb slices, we observed that the membrane potential of mitral cells oscillates between UP and DOWN states at a low frequency (<1 Hz). Such slow oscillations are correlated with glomerular local field potentials, indicating spontaneous local network activity. Using a combination of genetic and pharmacological tools, we showed that the activity of astroglial connexin 43 hemichannels, opened in an activity-dependent manner, increases UP state amplitude and impacts mitral cell firing rate. This effect requires functional adenosine A1 receptors, in line with the observation that ATP is released via connexin 43 hemichannels. These results highlight a new mechanism of neuroglial interaction in the olfactory bulb, where astrocyte connexin hemichannels are both targets and modulators of neuronal circuit function. SIGNIFICANCE STATEMENT: An emergent concept in neuroscience consists in considering brain function as the product of dynamic interactions between neurons and glial cells, particularly astrocytes. A typical feature of astrocytes is their high expression level of connexins, the molecular constituents of gap junction channels and hemichannels. Although hemichannels represent a powerful medium for intercellular communication between astrocytes and neurons, their function in physiological conditions remains largely unexplored. Our results show that in the olfactory bulb, connexin 43 hemichannel function is promoted by neuronal activity and, in turn, modulates neuronal network slow oscillations. This novel mechanism of neuroglial interaction could influence olfactory information processing by directly impacting the output of the olfactory bulb.


Asunto(s)
Astrocitos/metabolismo , Relojes Biológicos/fisiología , Conexina 43/metabolismo , Potenciales de la Membrana/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Antagonistas del Receptor de Adenosina A1/farmacología , Animales , Animales Recién Nacidos , Relojes Biológicos/efectos de los fármacos , Relojes Biológicos/genética , Carbenoxolona/farmacología , Conexina 30 , Conexina 43/genética , Conexinas/deficiencia , Conexinas/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Ácido Glutámico/metabolismo , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Péptidos/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Tetrodotoxina/farmacología , Xantinas/farmacología
19.
J Neurosci ; 35(25): 9526-38, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26109673

RESUMEN

Mast cells (MCs) store an array of proinflammatory mediators in secretory granules that are rapidly released upon activation by diverse conditions including amyloid beta (Aß) peptides. In the present work, we found a rapid degranulation of cultured MCs through a pannexin1 hemichannel (Panx1 HC)-dependent mechanism induced by Aß25-35 peptide. Accordingly, Aß25-35 peptide also increased membrane current and permeability, as well as intracellular Ca(2+) signal, mainly via Panx1 HCs because all of these responses were drastically inhibited by Panx1 HC blockers and absent in the MCs of Panx1(-/-) mice. Moreover, in acute coronal brain slices of control mice, Aß25-35 peptide promoted both connexin 43 (Cx43)- and Panx1 HC-dependent MC dye uptake and histamine release, responses that were only Cx43 HC dependent in Panx1(-/-) mice. Because MCs have been found close to amyloid plaques of patients with Alzheimer's disease (AD), their distribution in brain slices of APPswe/PS1dE9 mice, a murine model of AD, was also investigated. The number of MCs in hippocampal and cortical areas increased drastically even before amyloid plaque deposits became evident. Therefore, MCs might act as early sensors of amyloid peptide and recruit other cells to the neuroinflammatory response, thus playing a critical role in the onset and progression of AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Mastocitos/metabolismo , Fragmentos de Péptidos/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Western Blotting , Degranulación de la Célula/fisiología , Modelos Animales de Enfermedad , Electrofisiología , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Mastocitos/efectos de los fármacos , Ratones , Ratones Noqueados , Fragmentos de Péptidos/farmacología , Transfección
20.
Glia ; 64(4): 524-36, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26666873

RESUMEN

Astrocytes represent a major non-neuronal cell population actively involved in brain functions and pathologies. They express a large amount of gap junction proteins that allow communication between adjacent glial cells and the formation of glial networks. In addition, these membrane proteins can also operate as hemichannels, through which "gliotransmitters" are released, and thus contribute to neuroglial interaction. There are now reports demonstrating that alterations of astroglial gap junction communication and/or hemichannel activity impact neuronal and synaptic activity. Two decades ago we reported that several general anesthetics inhibited gap junctions in primary cultures of astrocytes (Mantz et al., (1993) Anesthesiology 78(5):892-901). As there are increasing studies investigating neuroglial interactions in anesthetized mice, we here updated this previous study by employing acute cortical slices and by characterizing the effects of general anesthetics on both astroglial gap junctions and hemichannels. As hemichannel activity is not detected in cortical astrocytes under basal conditions, we treated acute slices with the endotoxin LPS or proinflammatory cytokines to induce hemichannel activity in astrocytes, which in turn activated neuronal hemichannels. We studied two extensively used anesthetics, propofol and ketamine, and the more recently developed dexmedetomidine. We report that these drugs have differential inhibitory effects on gap junctional communication and hemichannel activity in astrocytes when used in their respective, clinically relevant concentrations, and that dexmedetomidine appears to be the least effective on both channel functions. In addition, the three anesthetics have similar effects on neuronal hemichannels. Altogether, our observations may contribute to optimizing the selection of anesthetics for in vivo animal studies.


Asunto(s)
Anestésicos Generales/farmacología , Astrocitos/efectos de los fármacos , Conexinas/metabolismo , Uniones Comunicantes/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Astrocitos/metabolismo , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Dexmedetomidina/farmacología , Técnica del Anticuerpo Fluorescente , Uniones Comunicantes/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ketamina/farmacología , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Propofol/farmacología , Técnicas de Cultivo de Tejidos , Imagen de Colorante Sensible al Voltaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA