Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PeerJ ; 9: e12099, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567844

RESUMEN

Oryza longistaminata, a perennial wild species, is widely distributed in the African continent. It has strong tolerance to biotic and abiotic stresses, and high biomass production on poor soils. Chlorophyll biosynthesis is important for photosynthesis in rice. However, the chlorophyll biosynthesis and related gene profiles of O. longistaminata and its descendants remained unclear. Here, the F1 generation of O. sativa and O. longistaminata were obtained. Then, the comparative analysis morphology, anatomical structure, and transcriptional regulatory networks of chlorophyll biosynthesis were detected and analyzed. Results showed that the F1 generation has obvious long awn, similar with that of the male parent. The purple color of the long awn is different from that of the male parent. Microstructural results showed that the flag leaves of F1 have large mesophyll cell gaps in the upper- and lower-positions, small mesophyll cell gaps in the middle position, and more chloroplasts. Increased chlorophyll content was also observed in the F1 generation. In the lower-position flag leaves, the total chlorophyll contents of F1 were 1.55 and 1.5 times those of O. sativa and O. longistaminata, respectively. POR, MgCH and HEMA1 showed higher expression levels than the other related genes selected in the chlorophyll biosynthesis pathway. The HEMA1 expression level in the middle-position flag leaves of O. longistaminata was the highest, and it was 2.83 and 2.51 times that of O. sativa and F1, respectively. The expression level of DVR gene in lower-position flag leaves of F1 were 93.16% and 95.06% lower than those of O. sativa and O. longistaminata, respectively. This study provided a potential reference for studying the photosynthesis and heterosis utilization of O. longistaminata.

2.
Yi Chuan ; 29(7): 851-8, 2007 Jul.
Artículo en Zh | MEDLINE | ID: mdl-17646152

RESUMEN

Centromeres play an important role in ensuring the correct segregation and transmission of chromosome during mitosis and meiosis in eukaryotes. In this research, we constructed five BAC libraries for diploid wild rice with different genomes. Together with the technique of colony blot hybridization and fluorescence in situ hybridization (FISH), centromere-related BAC clones were screened and characterized from different genomes. Meanwhile, co-hybridization was detected between these clones and the five genomes. The results from this study demonstrated that: (1) there were centromere-specific satellite repeat in Oryza officinalis (CC genome) and O. brachyantha (FF genome), respectively, and centromere-specific CRR-related sequence was found in O. brachyantha; (2) homology sequences of CentO and CRR of O. sativa (AA genome) were detected on all centromeres of O. glaberrima (AA genome), O. punctata (BB genome) and O. australiensis (EE genome); And (3) the two somatic chromosomes of O. officinalis comprised of homology sequences of CentO satellites as revealed FISH analysis probed with RCS2. Homology sequences of CRR of O. sativa were also detected on all centromeres of O. officinalis. The results provided a foundation toward cloning the centromeric sequences from different genomes of genus Oryza, studying centromere organization and evolution of different genome, analyzing the relationship between centromeric structure and function among different genome.


Asunto(s)
Centrómero/genética , Cromosomas Artificiales Bacterianos/genética , Genoma de Planta/genética , Oryza/genética , Clonación Molecular , Biblioteca Genómica , Hibridación Fluorescente in Situ
3.
Yi Chuan Xue Bao ; 30(8): 711-6, 2003 Aug.
Artículo en Zh | MEDLINE | ID: mdl-14682238

RESUMEN

Appearance of rice grain represents a major character of rice quality in many rice-producing areas of the world, especially in hybrid rice production in China. In this study, we conducted a molecular marker-based genetic analysis of the traits that are determinants of the appearance quality of rice grains, including grain length, grain width and grain shape (measured as grain length to grain width ratio). Two typical indica/japonica varieties Balilla and Nantehao(NTH) were selected to construct Balilla/NTH//Balilla backcross population containing 142 individuals. In the population, grain length, grain width and grain shape all conform to the normal distribution with certain transgressive segregation. It can be deduced that all of three traits were controlled by some quantitative trait loci (QTLs). In order to explore the QTLs effect, number and location, a linkage map consisting of 108 SSR markers based on the backcross population was constructed, and QTLs mapping was carried out for grain length, grain width and grain shape. A QTL, qGL-12, was detected for grain length at the interval RM101-RM270 on chromosome 12, its additive effect was 0.26 mm, and can explain 16.7% genetic variation. As for grain width trait, two QTLs were found, qGW-2 located at RM154-RM211 interval on chromosome 2, and qGW-3 at interval RM257-RM175 on chromosome 3, accounting for 11.5% and 16.6% genetic variation, respectively. The alleles at qGW-2 and qGW-3 from parent Balilla can increase grain width by 0.10 mm and 0.12 mm. For grain shape, 3 QTLs, qLW-2, qLW-6 and qLW-7 were found, located on chromosome 2, 6, and 7, respectively. qLW-2 and qLW-7 had positive effect, and they can explain 12.7% and 18.3% genetic variation, while qLW-6 had negative effect and contributed 11.5% genetic variation to the backcross population. The prospects of application of linkage relationship between SSR marker and QTLs in marker based selection (MAS) in rice breeding, and the improvement of grain shape and rice appearance quality were discussed.


Asunto(s)
Cromosomas de las Plantas/genética , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Endogamia , Repeticiones de Microsatélite , Oryza/anatomía & histología
4.
Yi Chuan Xue Bao ; 30(3): 267-76, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12812093

RESUMEN

To explore the genes differentiated between typical indica and japonica varieties, two typical indica/japonica varieties, Balilla (japonica) and Nantehao (NTH, indica), were selected to construct genetic populations based on the widely surveying for spikelet and pollen fertility of 90 indica/japonica F1 hybrids, which also were used as the wide compatability testers. In order to analyze the genes (QTLs) related to spikelet and pollen fertility, two reciprocal backcross populations Balilla/NTH//Balilla and Balilla/NTH//NTH were constructed and the spikelet and pollen fertility of each individuals were assessed. In both populations, two traits all appeared distorted normal distribution, but in the first population, they forwarded to low-level fertility type, the later population, forwarded to high-level fertility type relatively. The results indicated that both of male and female gametophytes of Balilla/NTH hybrids were partial sterile. Then we analyzed the SSR marker genotype of each individuals of Balilla/NTH//Balilla population containing 142 individuals, and constructed a SSR linkage map, in which, there were 108 information markers distributing on all 12 chromosomes equably, average marker distance was about 11.9 cM. Therefore the linkage map was qualified for QTL analysis. Two methods were employed to conduct QTLs analysis, i.e., single marker analysis and interval mapping. According to single marker analysis, 17 and 12 markers were found significantly responsible for spikelet and pollen fertility, respectively. And further study by means of MAPMAKER/QTL software, for spikelet fertility trait, two QTLs were detected, qSPTF1 on chromosome 1 and qSPTF6 on chromosome 6, and their additive effect were 13.501 and -16.414, respectively. According to previous studies, qSPTF6 was deduced to be the same locus as S-5. For pollen fertility, qPLLN7 on chromosome 7 and qPLLN9 on chromosome 9 were detected, and their additive effects were -12.003 and -11.012, respectively. Because the QTLs detected cannot explain completely the total variance of mapping population, other genetic factors must be existed to be responsible for spikelet and pollen partial sterility. Hence we let two random markers as putative covariates, and divide the 142 individuals into four groups according to the two marker genotypes, then the average values of spikelet and pollen fertility of each groups were calculated for two-way ANOVA (analysis of variance). The results indicated that there existed strong interaction for both spikelet fertility and pollen fertility. At a significance level of 0.005, there over 61 and 51 pairs loci interactions detected playing an important role in spikelet and pollen sterility expression, respectively. These results indicated that epistasis also was one of major genetic components controlling indica/japonica hybrid sterility.


Asunto(s)
Hibridación Genética/genética , Repeticiones de Microsatélite/genética , Oryza/genética , Análisis de Varianza , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Fertilidad/genética , Polen/genética , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA