Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci (China) ; 141: 261-276, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38408827

RESUMEN

Metal-organic frameworks (MOFs) have favorable characteristics such as large specific surface area, high porosity, structural diversity, and pore surface modification, giving them great potential for development and attractive prospects in the research area of modern materials electrocatalysis. However, unsatisfactory catalytic activity and poor electronic conductivity are the main challenges facing MOFs. This review focuses on MOF-based materials used in electrocatalysis, based on the types of catalytic reactions that have used MOF-based materials in recent years along with their applications, and also looks at some new electrocatalytic materials and their future development prospects.


Asunto(s)
Estructuras Metalorgánicas , Catálisis , Conductividad Eléctrica , Porosidad
2.
J Environ Sci (China) ; 138: 482-495, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135414

RESUMEN

In this work, the phosphomolybdate (HPMo) modification strategy was applied to improve the N2 selectivity of MnCo-BTC@SiO2 catalyst for the selective catalytic reduction of NOx, and further, the mechanism of HPMo modification on enhanced catalytic performance was explored. Among MnCo-BTC@SiO2-x catalysts with different HPMo concentrations, MnCo-BTC@SiO2-0.75 catalyst exhibited not only the highest NH3-SCR performance (∼95% at 200-300°C) but also the best N2 selectivity (exceed 80% at 100-300°C) due to the appropriate redox capacity, greater surface acidity. X-ray photoelectron spectrometer (XPS) and temperature programmed reduction of H2 (H2-TPR) results showed that the modification with HPMo reduced the oxidation-reduction performance of the catalyst due to electron transfer from Mo5+ to Mn4+/Mn3+ and prevent the excessive oxidation of ammonia adsorption species. NH3 temperature-programmed desorption of (NH3-TPD) results showed that the modification with HPMo could significantly improve the surface acidity and NH3 adsorption, which enhance the catalytic activity and N2 selectivity. In-situ diffused reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS) revealed that modification with HPMo increased significantly the amount of adsorbed NH3 species on the Bronsted acid site and CB/CL, it suppressed the production of N2O by inhibiting the production of NH species, the deep dehydrogenation of ammonia adsorption species. This study provided a simple design strategy for the catalyst to improve the low-temperature catalytic performance and N2 selectivity.


Asunto(s)
Amoníaco , Dióxido de Silicio , Amoníaco/química , Oxidación-Reducción , Temperatura , Frío , Catálisis
3.
J Environ Sci (China) ; 124: 491-504, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36182157

RESUMEN

Ce1-xZrxO2 composite oxides (molar, x = 0-1.0, interval of 0.2) were prepared by a cetyltrimethylammonium bromide-assisted precipitation method. The enhancement of silver-species modification and catalytic mechanism of adsorption-transformation-desorption process were investigated over the Ag-impregnated catalysts for low-temperature selective catalytic oxidation of ammonia (NH3-SCO). The optimal 5 wt.% Ag/Ce0.6Zr0.4O2 catalyst presented good NH3-SCO performance with >90% NH3 conversion at temperature (T) ≥ 250°C and 89% N2 selectivity. Despite the irregular block shape and underdeveloped specific surface area (∼60 m2/g), the naked and Ag-modified Ce0.6Zr0.4O2 solid solution still obtained highly dispersed distribution of surface elements analyzed by scanning electron microscope-energy dispersive spectrometer (SEM-EDS) (mapping), N2 adsorption-desorption test and X-ray diffraction (XRD). H2 temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) results indicated that Ag-modification enhanced the mobility and activation of oxygen-species leading to a promotion on CeO2 reducibility and synergistic Ag0/Ag+ and Ce4+/Ce3+ redox cycles. Besides, Ag+/Ag2O clusters could facilitate the formation of surface oxygen vacancies that was beneficial to the adsorption and activation of ammonia. NH3-temperature programmed desorption (NH3-TPD) showed more adsorption-desorption capacity to ammonia were provided by physical, weak- and medium-strong acid sites. Diffused reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments revealed the activation of ammonia might be the control step of NH3-SCO procedure, during which NH3 dehydrogenation derived from NHx-species and also internal selective catalytic reduction (i-SCR) reactions were proposed.


Asunto(s)
Amoníaco , Plata , Amoníaco/química , Catálisis , Cetrimonio , Oxidación-Reducción , Óxidos , Oxígeno
4.
J Environ Sci (China) ; 125: 112-134, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375898

RESUMEN

As the main contributor of the formation of particulate matter as well as ozone, volatile organic compounds (VOCs) greatly affect human health and the environmental quality. Catalytic combustion/oxidation has been viewed as an efficient, economically feasible and environmentally friendly way for the elimination of VOCs. Supported metal catalyst is the preferred type of catalysts applied for VOCs catalytic combustion because of the synergy between active components and support as well as its flexibility in the composition. The presence of support not only plays the role of keeping the catalyst with good stability and mechanical strength, but also provides a large specific surface for the good dispersion of active components, which could effectively improve the performance of catalyst as well as decrease the usage of active components, especially the noble metal amount. Mesoporous molecular sieves, owing to their large surface area, unique porous structures, large pore size as well as uniform pore-size distribution, were viewed as superior support for dispersing active components. This review focuses on the recent development of mesoporous molecular sieve supported metal catalysts and their application in catalytic oxidation of VOCs. The effect of active component types, support structure, preparation method, precursors, etc. on the valence state, dispersion as well as the loading of active species were also discussed and summarized. Moreover, the corresponding conversion route of VOCs was also addressed. This review aims to provide some enlightment for designing the supported metal catalysts with superior activity and stability for VOCs removal.


Asunto(s)
Ozono , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/química , Catálisis , Oxidación-Reducción , Material Particulado , Metales
5.
J Environ Sci (China) ; 126: 308-320, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503759

RESUMEN

Energy-saving and efficient monolithic catalysts are hotspots of catalytic purification of industrial gaseous pollutants. Here, we have developed an electrothermal catalytic mode, in which the ignition temperature required for the reaction is provided by Joule heat generated when the current flows through the catalyst. In this paper, Mn/NiAl/NF, Mn/NiFe/NF and Mn/NF metal-based monolithic catalysts were prepared using nickel foam (NF) as the carrier for thermal and electrothermal catalysis of n-heptane. The results indicated that Mn-based monolithic catalysts exhibit high activity in thermal and electrothermal catalysis. Mn/NiFe/NF achieve conversion of n-heptane more than 99% in electrothermal catalysis under a direct-current (DC) power of 6 W, and energy-saving is 54% compared with thermal catalysis. In addition, the results indicated that the introduction of NiAl (or NiFe) greatly enhanced the catalytic activity of Mn/NF, which attributed to the higher specific surface area, Mn3+/Mn4+, Ni3+/Ni2+, adsorbed oxygen species (Oads)/lattice oxygen species (Olatt), redox performance of the catalyst. Electrothermal catalytic activity was significantly higher than thermal catalytic activity before complete conversion, which may be related to electronic effects. Besides, Mn/NiFe/NF has good cyclic and long-term stability in electrothermal catalysis. This paper provided a theoretical basis for applying electrothermal catalysis in the field of VOCs elimination.


Asunto(s)
Níquel , Óxidos , Compuestos de Manganeso , Oxígeno
6.
Ceram Int ; 48(23): 34148-34168, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36059853

RESUMEN

Food packages have been detected carrying novel coronavirus in multi-locations since the outbreak of COVID-19, causing major concern in the field of food safety. Metal-based supported materials are widely used for sterilization due to their excellent antibacterial properties as well as low biological resistance. As the principal part of antibacterial materials, the active component, commonly referred to Ag, Cu, Zn, etc., plays the main role in inhibiting and killing pathogenic microorganisms by destroying the structure of cells. As another composition of metal-based antibacterial materials, the carrier could support and disperse the active component, which on one hand, could effectively decrease the usage amount of active component, on the other hand, could be processed into various forms to broaden the application range of antibacterial materials. Different from other metal-based antibacterial reviews, in order to highlight the detailed function of various carriers, we divided the carriers into biocompatible and adsorptable types and discussed their different antibacterial effects. Moreover, a novel substitution antibacterial mechanism was proposed. The coating and shaping techniques of metal-based antibacterial materials as well as their applications in food storage at ambient and low temperatures are also comprehensively summarized. This review aims to provide a theoretical basis and reference for researchers in this field to develop new metal-based antibacterial materials.

7.
J Environ Sci (China) ; 113: 204-218, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34963529

RESUMEN

NH3-SCR performances were explored to the relationship between structure morphology and physio-chemical properties over low-dimensional ternary Mn-based catalysts prepared by one-step synthesis method. Due to its strong oxidation performance, Sn-MnOx was prone to side reactions between NO, NH3 and O2, resulting in the generation of more NO2 and N2O, here most of N2O was driven from the non-selective oxidation of NH3, while a small part generated from the side reaction between NH3 and NO2. Co or Ni doping into Sn-MnOx as solid solution components obviously stronged the electronic interaction for actively mobilization and weakened the oxidation performance for signally reducing the selective tendency of side reactions to N2O. The optimal modification resulted in improving the surface area and enhancing the strong interaction between polyvalent cations in Co/Ni-Mn-SnO2 to provide more surface adsorbed oxygen, active sites of Mn3+ and Mn4+, high-content Sn4+ and plentiful Lewis-acidity for more active intermediates, which significantly broadened the activity window of Sn-MnOx, improved the N2 selectivity by inhibiting N2O formation, and also contributed to an acceptable resistances to water and sulfur. At low reaction temperatures, the SCR reactions over three catalysts mainly obeyed the typical Elye-rideal (E-R) routs via the reactions of adsorbed l-NHx (x = 3, 2, 1) and B-NH4+ with the gaseous NO to generate N2 but also N2O by-products. Except for the above basic E-R reactions, as increasing the reaction temperature, the main adsorbed NOx-species were bidentate nitrates that were also active in the Langmuir-Hinshelwood reactions with adsorbed l-NHx species over Co/Ni modified Mn-SnO2 catalyst.


Asunto(s)
Amoníaco , Óxidos , Catálisis , Óxidos de Nitrógeno , Oxidación-Reducción
8.
J Environ Sci (China) ; 101: 36-48, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33334530

RESUMEN

Cu-Co multiple-oxides modified on HNO3-pretreated activated coke (ACN) were optimized for the simultaneous removal of gaseous CO and elemental mercury (Hg0) at low temperature (< 200 °C). It was found that 2%CuOx-10%CoOx/ACN catalyst calcined at 400°C resulted in the coexistence of complex oxides including CuO, Cu2O, Co3O4, Co2O3 and CoO phases, which might be good for the simultaneous catalytic oxidation of CO by Co-species and removal of Hg0 by Cu-species, benefiting from the synergistic catalysis during the electro-interaction between Co and Cu cations (CoO ⇌ Co3O4 and Cu2O ⇌ CuO). The catalysis removal of CO oxidation was obviously depended on the reaction temperature obtaining 94.7% at 200 °C, while no obvious promoting effect on the Hg0 removal (68.3%-78.7%). These materials were very substitute for the removal of CO and Hg° from the flue gas with the conditions of 8-20 vol.% O2 and flue-gas temperature below 200 °C. The removal of Hg° followed the combination processes of adsorption and catalytic oxidation reaction via Langmuir-Hinshelwood mechanism, while the catalysis of CO abided by the Mars-van Krevelen mechanism with lattice oxygen species.


Asunto(s)
Coque , Mercurio , Adsorción , Catálisis , Gases , Oxidación-Reducción , Temperatura
9.
J Environ Sci (China) ; 89: 145-155, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31892387

RESUMEN

Mn-Ni oxides with different compositions were prepared using standard co-precipitation (CP) and urea hydrolysis-precipitation (UH) methods and optimized for the selective catalytic reduction of nitrogen oxides (NOx) by NH3 at low temperature. Mn(2)Ni(1)Ox-CP and Mn(2)Ni(1)Ox-UH (with Mn:Ni molar ratio of 2:1) catalysts showed almost identical selective catalytic reduction (SCR) catalytic activity, with about 96% NOx conversion at 75°C and ~99% in the temperature range from 100 to 250°C. X-ray diffraction (XRD) results showed that Mn(2)Ni(1)Ox-CP and Mn(2)Ni(1)Ox-UH catalysts crystallized in the form of Mn2NiO4 and MnO2-Mn2NiO4 spinel, respectively. The latter gave relatively good selectivity to N2, which might be due to the presence of the MnO2 phase and high metal-O binding energy, resulting in low dehydrogenation ability. According to the results of various characterization methods, it was found that a high density of surface chemisorbed oxygen species and efficient electron transfer between Mn and Ni in the crystal structure of Mn2NiO4 spinel played important roles in the high-efficiency SCR activity of these catalysts. Mn(2)Ni(1)Ox catalysts presented good resistance to H2O or/and SO2 with stable activity, which benefited from the Mn2NiO4 spinel structure and Eley-Rideal mechanism, with only slight effects from SO2.


Asunto(s)
Compuestos de Manganeso , Óxidos de Nitrógeno/química , Óxidos , Dióxido de Azufre/química , Óxido de Aluminio , Amoníaco , Catálisis , Óxido de Magnesio , Oxidación-Reducción , Temperatura , Agua/química
10.
J Environ Sci (China) ; 67: 104-114, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29778142

RESUMEN

This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process.


Asunto(s)
Carbón Orgánico/química , Modelos Químicos , Tolueno/química , Adsorción , Cinética
11.
Environ Technol ; 36(5-8): 588-94, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25189414

RESUMEN

Mesoporous alumina (MA) with a higher ability to simultaneously remove SO2 and NO was prepared by the evaporation-induced self-assembly process. The adsorption capacities of MA are 1.79 and 0.702 mmol/g for SO2 and NO, respectively. The Brunauer-Emmett-Teller method was used to characterize the adsorbent. Simultaneous adsorption of SO2 and NO from flue gas over MA in different operating conditions had been studied in a fixed bed reactor. The effects of temperature, oxygen concentration and water vapour were investigated. The experimental results showed that the optimum temperature for MA to simultaneously remove SO2 and NO was 90°C. The simultaneous adsorption capacities of SO2 and NO could be enhanced by increasing O2 when its concentration was below 5%. The changes of simultaneous adsorption capacities were not obvious when O2 concentration was above 5%. The increase in relative humidity results in an increase after dropping of SO2 adsorption capacity, whereas the adsorption capacity of NO showed an opposite trend. The results suggest that MA is a great adsorbent for simultaneous removal of SO2 and NO from flue gas.


Asunto(s)
Contaminantes Atmosféricos/aislamiento & purificación , Óxido de Aluminio/síntesis química , Óxido Nítrico/aislamiento & purificación , Dióxido de Azufre/aislamiento & purificación , Adsorción , Oxígeno , Temperatura , Agua
12.
Sci Total Environ ; 920: 170748, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340848

RESUMEN

Catalytic oxidation, an end-of-pipe treatment technology for effectively purifying volatile organic compounds (VOCs), has received widespread attention. The crux of catalytic oxidation lies in the development of efficient catalysts, with their optimization necessitating a comprehensive analysis of the catalytic reaction mechanism. Two-dimensional (2D) ultra-thin nanomaterials offer significant advantages in exploring the catalytic oxidation mechanism of VOCs due to their unique structure and properties. This review classifies strategies for regulating catalytic properties and typical applications of 2D materials in VOCs catalytic oxidation, in addition to their characteristics and typical characterization techniques. Furthermore, the possible reaction mechanism of 2D Co-based and Mn-based oxides in the catalytic oxidation of VOCs is analyzed, with a special focus on the synergistic effect between oxygen and metal vacancies. The objective of this review is to provide valuable references for scholars in the field.

13.
ACS Appl Mater Interfaces ; 16(3): 3593-3604, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38215440

RESUMEN

Mining the scientific literature, combined with data-driven methods, may assist in the identification of optimized catalysts. In this paper, we employed interpretable machine learning to discover ternary metal oxides capable of selective catalytic reduction of nitrogen oxides with ammonia (NH3-SCR). Specifically, we devised a machine learning framework utilizing extreme gradient boosting (XGB), identified for its optimal performance, and SHapley Additive exPlanations (SHAP) to evaluate a curated database of 5654 distinct metal oxide composite catalytic systems containing cerium (Ce) element, with records of catalyst composition and preparation and reaction conditions. By virtual screening, this framework precisely pinpointed a CeO2-MoO3-Fe2O3 catalyst with superior NOx conversion, N2 selectivity, and resistance to H2O and SO2, as confirmed by empirical evaluations. Subsequent characterization affirmed its favorable structural, chemical bulk properties and reaction mechanism. Demonstrating the efficacy of combining knowledge-driven techniques with experimental validation and analysis, our strategy charts a course for analogous catalyst discoveries.

14.
ScientificWorldJournal ; 2013: 463160, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23970835

RESUMEN

Electrochemical promotion of catalysis reactions (EPOC) is one of the most significant discoveries in the field of catalytic and environmental protection. The work presented in this paper focuses on the aspects of reaction mechanism, influencing factors, and recent positive results. It has been shown with more than 80 different catalytic systems that the catalytic activity and selectivity of conductive catalysts deposited on solid electrolytes can be altered in the last 30 years. The active ingredient of catalyst can be activated by applying constant voltage or constant current to the catalysts/electrolyte interface. The effect of EPOC can improve greatly the conversion rate of NOx. And it can also improve the lifetime of catalyst by inhibiting its poisoning.


Asunto(s)
Técnicas Electroquímicas/métodos , Catálisis , Conservación de los Recursos Naturales
15.
ScientificWorldJournal ; 2013: 680798, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24382947

RESUMEN

This paper may be of particular interest to the readers as it provides a new environmental risk assessment system for phosphogypsum tailing dams. In this paper, we studied the phosphogypsum tailing dams which include characteristics of the pollution source, environmental risk characteristics and evaluation requirements to identify the applicable environmental risk assessment methods. Two analytical methods, that is, the analytic hierarchy process (AHP) and fuzzy logic, were used to handle the complexity of the environmental and nonquantitative data. Using our assessment method, different risk factors can be ranked according to their contributions to the environmental risk, thereby allowing the calculation of their relative priorities during decision making. Thus, environmental decision-makers can use this approach to develop alternative management strategies for proposed, ongoing, and completed PG tailing dams.


Asunto(s)
Sulfato de Calcio/análisis , Ambiente , Monitoreo del Ambiente/métodos , Minería/métodos , Modelos Teóricos , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Simulación por Computador , Medición de Riesgo/métodos
16.
ScientificWorldJournal ; 2013: 739501, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23956697

RESUMEN

Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide.


Asunto(s)
Frío , Óxidos de Azufre/química , Hidrólisis , Cinética
17.
J Environ Sci (China) ; 25(8): 1608-17, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24520699

RESUMEN

Air quality model can be an adequate tool for future air quality prediction, also atmospheric observations supporting and emission control strategies responders. The influence of emission control policy (emission reduction targets in the national "China's 12th Five-Year Plan (2011-2015)") on the air quality in the near future over an important industrial city of China, Xuanwei in Yunnan Province, was studied by applying the AERMOD modeling system. First, our analysis demonstrated that the AERMOD modeling system could be used in the air quality simulation in the near future for SO2 and NOx under average meteorology but not for PM10. Second, after evaluating the simulation results in 2008 and 2015, ambient concentration of SO2, NOx and PM10 (only 2008) were all centered in the middle of simulation area where the emission sources concentrated, and it is probably because the air pollutions were source oriented. Last but not least, a better air quality condition will happen under the hypothesis that the average meteorological data can be used in near future simulation. However, there are still heavy polluted areas where ambient concentrations will exceed the air quality standard in near future. In spatial allocation, reduction effect of SO2 is more significant than NOx in 2015 as the contribution of SO2 from industry is more than NOx. These results inspired the regulatory applications of AERMOD modeling system in evaluating environmental pollutant control policy.


Asunto(s)
Contaminantes Atmosféricos/análisis , Política Ambiental , China , Monitoreo del Ambiente/métodos
18.
Sci Total Environ ; 891: 164580, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37286009

RESUMEN

The cement industry is one of the most energy- and carbon-intensive industries in China, and it is difficult to attain deep decarbonization toward carbon neutrality. This paper provides a comprehensive review of the historical emission trend and future decarbonization pathway of China's cement industry, in which the opportunities and challenges of key technologies, carbon mitigation potential and co-benefits are examined. The results showed that from 1990 to 2020, the carbon dioxide (CO2) emissions of China's cement industry experienced a growing trend, while air pollutant emissions were largely decoupled from cement production growth. Between 2020 and 2050, China's cement production may decrease by over 40 %, and CO2 emissions will decline from 1331 Tg to 387 Tg under the Low scenario given a combination of certain mitigation measures, including energy efficiency improvement, alternative energy sources, alternative materials, carbon capture, utilization, and storage (CCUS) technology, and new cement. Before 2030, carbon reduction under the low scenario is determined by factors including energy efficiency improvement, alternative energy sources, and alternative materials. Afterward, CCUS technology will become increasingly imperative and conducive to deep decarbonization of the cement industry. After implementation of all the above measures, 387 Tg of CO2 will still be emitted by the cement industry in 2050. As such, improving the quality and service life of buildings and infrastructure as well as the carbonation of cement materials has a positive effect on carbon reduction. Finally, carbon mitigation measures in the cement industry can provide air quality improvement co-benefits.

19.
Nanoscale ; 15(29): 12157-12174, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37431630

RESUMEN

Chlorinated benzene-containing compounds (CBCs) refer to volatile organic compounds which simultaneously contain benzene rings and Cl atoms. It has been widely believed to cause serious harm to human health and the natural environment due to high toxicity, high persistence, and refractory degradation, thus, it is urgent to develop CBC abatement technology. In this review, several CBCs control techniques are compared, and the catalytic oxidation technology stands out for its good low-temperature activity and chlorine resistance of metal oxide catalysts. Then, the common and individual reaction pathways and water impact mechanisms of CBC catalytic oxidation on transition metal catalysts are concluded. Subsequently, three typical metal oxides (namely, VOx, MnOx, and CeO2-based catalysts) are introduced in the catalytic degradation of CBCs, whose catalytic activity influence factors are also proposed on active components, support properties, surface acidity, and nanostructure (crystal, morphology, etc.). Furthermore, the effective strategies to enhance the REDOX cycle and surface acidic sites are summarized by the doping of metals, the modification of support or/and acidic groups, and the construction of nanostructures. Finally, the key points for efficient catalyst design are speculated. This review may provide ideas for the breakthroughs of activity-enhanced strategies, the design of efficient catalysts, and research on reaction-promoted mechanisms.

20.
Environ Sci Pollut Res Int ; 29(37): 55367-55399, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35672638

RESUMEN

With the awakening of environmental awareness, the importance of air quality to human health and the proper functioning of social mechanisms is becoming increasingly prominent. The low cost and high efficiency of catalytic technique makes it a natural choice for achieving deep air purification. Stainless steel alloys have demonstrated their full potential for application in a variety of catalytic fields. The diversity of 3D networks or fibrous structures increases the turbulence within the heterogeneous catalysis, balance the temperature distribution in the reaction bed and, in combination with a highly thermally conductive skeleton, avoid agglomeration and deactivation of the active components; corrosion resistance and thermal stability are adapted to highly endothermic/exothermic or corrosive reaction environments; oxide layers formed by bulk transition metals activated by thermal treatment or etching can significantly alter the physico-chemical properties between the substrate and active species, further improving the stability of stainless steel catalysts; suitable electronic conductivity can be applied to the electrothermal catalysis, which is expected to provide guidance for the reduction of intermittent emission exhausts and the storage of renewable energy. The current applications of stainless steel as catalyst or support in the air purification have covered soot particle capture and combustion, catalytic oxidation of VOCs, SCR, and air sterilization. This paper summarizes several preparation methods and presents the relationships between the preparation process and the activity, and reviews its application and the current status of research in atmospheric environmental management, proposing the advantages and challenges of the stainless steel-based catalysts.


Asunto(s)
Contaminación del Aire , Acero Inoxidable , Contaminación del Aire/prevención & control , Catálisis , Corrosión , Humanos , Hollín/química , Acero Inoxidable/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA