Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell ; 73(2): 354-363.e3, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30581146

RESUMEN

Ferroptosis is a regulated necrosis process driven by iron-dependent lipid peroxidation. Although ferroptosis and cellular metabolism interplay with one another, whether mitochondria are involved in ferroptosis is under debate. Here, we demonstrate that mitochondria play a crucial role in cysteine-deprivation-induced ferroptosis but not in that induced by inhibiting glutathione peroxidase-4 (GPX4), the most downstream component of the ferroptosis pathway. Mechanistically, cysteine deprivation leads to mitochondrial membrane potential hyperpolarization and lipid peroxide accumulation. Inhibition of mitochondrial TCA cycle or electron transfer chain (ETC) mitigated mitochondrial membrane potential hyperpolarization, lipid peroxide accumulation, and ferroptosis. Blockage of glutaminolysis had the same inhibitory effect, which was counteracted by supplying downstream TCA cycle intermediates. Importantly, loss of function of fumarate hydratase, a tumor suppressor and TCA cycle component, confers resistance to cysteine-deprivation-induced ferroptosis. Collectively, this work demonstrates the crucial role of mitochondria in cysteine-deprivation-induced ferroptosis and implicates ferroptosis in tumor suppression.


Asunto(s)
Ciclo del Ácido Cítrico , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Fibroblastos/enzimología , Hierro/metabolismo , Peroxidación de Lípido , Mitocondrias/enzimología , Animales , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Glutamina/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/patología , Mutación , Necrosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 117(49): 31189-31197, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229547

RESUMEN

Ferroptosis, a form of regulated necrosis driven by iron-dependent peroxidation of phospholipids, is regulated by cellular metabolism, redox homeostasis, and various signaling pathways related to cancer. In this study, we found that activating mutation of phosphatidylinositol 3-kinase (PI3K) or loss of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) function, highly frequent events in human cancer, confers ferroptosis resistance in cancer cells, and that inhibition of the PI3K-AKT-mTOR signaling axis sensitizes cancer cells to ferroptosis induction. Mechanistically, this resistance requires sustained activation of mTORC1 and the mechanistic target of rapamycin (mTOR)C1-dependent induction of sterol regulatory element-binding protein 1 (SREBP1), a central transcription factor regulating lipid metabolism. Furthermore, stearoyl-CoA desaturase-1 (SCD1), a transcriptional target of SREBP1, mediates the ferroptosis-suppressing activity of SREBP1 by producing monounsaturated fatty acids. Genetic or pharmacologic ablation of SREBP1 or SCD1 sensitized ferroptosis in cancer cells with PI3K-AKT-mTOR pathway mutation. Conversely, ectopic expression of SREPB1 or SCD1 restored ferroptosis resistance in these cells, even when mTORC1 was inhibited. In xenograft mouse models for PI3K-mutated breast cancer and PTEN-defective prostate cancer, the combination of mTORC1 inhibition with ferroptosis induction resulted in near-complete tumor regression. In conclusion, hyperactive mutation of PI3K-AKT-mTOR signaling protects cancer cells from oxidative stress and ferroptotic death through SREBP1/SCD1-mediated lipogenesis, and combination of mTORC1 inhibition with ferroptosis induction shows therapeutic promise in preclinical models.


Asunto(s)
Ferroptosis/genética , Neoplasias/genética , Fosfohidrolasa PTEN/genética , Estearoil-CoA Desaturasa/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Animales , Línea Celular Tumoral , Ácidos Grasos Monoinsaturados/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Lipogénesis/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Neoplasias/patología , Proteína Oncogénica v-akt/genética , Oxidación-Reducción , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética
3.
Science ; 372(6545): 968-972, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33888598

RESUMEN

The coenzyme nicotinamide adenine dinucleotide phosphate (NADP+) and its reduced form (NADPH) regulate reductive metabolism in a subcellularly compartmentalized manner. Mitochondrial NADP(H) production depends on the phosphorylation of NAD(H) by NAD kinase 2 (NADK2). Deletion of NADK2 in human cell lines did not alter mitochondrial folate pathway activity, tricarboxylic acid cycle activity, or mitochondrial oxidative stress, but rather led to impaired cell proliferation in minimal medium. This growth defect was rescued by proline supplementation. NADK2-mediated mitochondrial NADP(H) generation was required for the reduction of glutamate and hence proline biosynthesis. Furthermore, mitochondrial NADP(H) availability determined the production of collagen proteins by cells of mesenchymal lineage. Thus, a primary function of the mitochondrial NADP(H) pool is to support proline biosynthesis for use in cytosolic protein synthesis.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , NADP/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Prolina/biosíntesis , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Ciclo del Ácido Cítrico , Colágeno/metabolismo , Medios de Cultivo , Citosol/metabolismo , Femenino , Ácido Fólico/metabolismo , Técnicas de Inactivación de Genes , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Humanos , Metaboloma , Ratones , Ratones Desnudos , Proteínas Mitocondriales/genética , Estrés Oxidativo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
4.
Cell Chem Biol ; 26(5): 621-622, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31100261

RESUMEN

Induction of ferroptosis has emerged as a potential cancer therapeutic approach. In this issue of Cell Chemical Biology, Zhang et al. (2019) demonstrate the anticancer efficacy and safety of the ferroptosis inducer imidazole ketone erastin (IKE) in a xenograft model by using a nanoparticle-based delivery system.


Asunto(s)
Linfoma , Nanopartículas , Neoplasias , Animales , Ferroptosis , Imidazoles , Cetonas , Ratones , Piperazinas
5.
Mol Cancer Ther ; 15(7): 1495-503, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27197304

RESUMEN

Multidrug resistance (MDR) is a major cause of tumor treatment failure; therefore, drugs that can avoid this outcome are urgently needed. We studied triptolide, which directly kills MDR tumor cells with a high potency and a broad spectrum of cell death. Triptolide did not inhibit P-glycoprotein (P-gp) drug efflux and reduced P-gp and MDR1 mRNA resulting from transcription inhibition. Transcription factors including c-MYC, SOX-2, OCT-4, and NANOG were not correlated with triptolide-induced cell killing, but RPB1, the largest subunit of RNA polymerase II, was critical in mediating triptolide's inhibition of MDR cells. Triptolide elicited antitumor and anti-MDR activity through a universal mechanism: by activating CDK7 by phosphorylating Thr170 in both parental and MDR cell lines and in SK-OV-3 cells. The CDK7-selective inhibitor BS-181 partially rescued cell killing induced by 72-hour treatment of triptolide, which may be due to partial rescue of RPB1 degradation. We suggest that a precise phosphorylation site on RPB1 (Ser1878) was phosphorylated by CDK7 in response to triptolide. In addition, XPB and p44, two transcription factor TFIIH subunits, did not contribute to triptolide-driven RPB1 degradation and cell killing, although XPB was reported to covalently bind to triptolide. Several clinical trials are underway to test triptolide and its analogues for treating cancer and other diseases, so our data may help expand potential clinical uses of triptolide, as well as offer a compound that overcomes tumor MDR. Future investigations into the primary molecular target(s) of triptolide responsible for RPB1 degradation may suggest novel anti-MDR target(s) for therapeutic development. Mol Cancer Ther; 15(7); 1495-503. ©2016 AACR.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Quinasas Ciclina-Dependientes/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Diterpenos/farmacología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Fenantrenos/farmacología , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Compuestos Epoxi/farmacología , Regulación Neoplásica de la Expresión Génica , Genes myc , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Fosforilación , Proteolisis , Transducción de Señal/efectos de los fármacos , Ensayo de Tumor de Célula Madre , Quinasa Activadora de Quinasas Ciclina-Dependientes
6.
Oncotarget ; 6(11): 8960-73, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25840421

RESUMEN

Both microtubule and topoisomerase II (Top2) are important anticancer targets and their respective inhibitors are widely used in combination for cancer therapy. However, some combinations could be mutually antagonistic and drug resistance further limits their therapeutic efficacy. Here we report YCH337, a novel α-carboline derivative that targets both microtubule and Top2, eliciting tumor proliferation and growth inhibition and overcoming drug resistance. YCH337 inhibited microtubule polymerization by binding to the colchicine site and subsequently led to mitotic arrest. It also suppressed Top2 and caused DNA double-strand breaks. It disrupted microtubule more potently than Top2. YCH337 induced reversible mitotic arrest at low concentrations but persistent DNA damage. YCH337 caused intrinsic and extrinsic apoptosis and decreased MCL-1, cIAP1 and XIAP proteins. In this aspect, YCH337 behaved differently from the combination of vincristine and etoposide. YCH337 inhibited proliferation of tumor cells with an averaged IC50 of 0.3 µM. It significantly suppressed the growth of HT-29 xenografts in nude mice too. Importantly, YCH337 nearly equally killed different-mechanism-mediated resistant tumor cells and corresponding parent cells. Together with the novelty of its chemical structure, YCH337 could serve as a promising lead for drug development and a prototype for a dual microtubule/Top2 targeting strategy for cancer therapy.


Asunto(s)
Carbolinas/uso terapéutico , Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN de Neoplasias/efectos de los fármacos , Proteínas de Neoplasias/antagonistas & inhibidores , Inhibidores de Topoisomerasa II/uso terapéutico , Moduladores de Tubulina/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión/efectos de los fármacos , Unión Competitiva , Carbolinas/farmacología , Línea Celular Tumoral , Colchicina/metabolismo , Neoplasias del Colon/tratamiento farmacológico , ADN-Topoisomerasas de Tipo II/fisiología , ADN Superhelicoidal/efectos de los fármacos , Interacciones Farmacológicas , Ensayos de Selección de Medicamentos Antitumorales , Etopósido/farmacología , Humanos , Concentración 50 Inhibidora , Metafase/efectos de los fármacos , Ratones , Ratones Desnudos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Estructura Molecular , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/fisiología , Paclitaxel/farmacología , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/farmacología , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/farmacología , Vincristina/farmacología
7.
Mol Cancer Ther ; 13(6): 1480-91, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24688049

RESUMEN

Colchicine site-targeted tubulin inhibitors are a promising type of anticancer drugs. MT189 is a new derivative of MT119, a previously reported colchicine site-binding antitubulin agent. In this study, MT189 was demonstrated to retain the property of MT119 in disrupting microtubulin via binding to the colchicine site, causing mitotic arrest and inducing apoptosis, and to display 8.7-fold enhanced proliferative inhibition in a panel of cancer cells. MT189 was shown to elicit in vivo anticancer effects on MDA-MB-231 xenografts in nude mice, and the tumor growth was suppressed by 35.9% over 14 days. MT189 led to degradation of MCL-1, a member of the antiapoptotic BCL-2 protein family. Its overexpression reduced but its silenced expression increased the apoptotic induction followed by the treatment with MT189. Moreover, the treatment with MT189 caused activation of the MEKK1/TAK1-MKK4-JNK signaling pathway. The activated JNK resulted in phosphorylation of MCL-1, which facilitated its ubiquitination-mediated degradation. Our results show that MT189 inhibits microtubulin polymerization by binding to the colchicine site. Relief of apoptotic suppression by MCL-1 degradation together with mitotic arrest contributes to the anticancer activity of MT189.


Asunto(s)
Antineoplásicos/administración & dosificación , Imidazoles/administración & dosificación , MAP Quinasa Quinasa 4/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias/tratamiento farmacológico , Piridinas/administración & dosificación , Moduladores de Tubulina/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Células HT29 , Humanos , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Neoplasias/metabolismo , Fosforilación , Proteolisis/efectos de los fármacos , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA