RESUMEN
Innate lymphoid cells (ILCs) promote tissue homeostasis and immune defense but also contribute to inflammatory diseases. ILCs exhibit phenotypic and functional plasticity in response to environmental stimuli, yet the transcriptional regulatory networks (TRNs) that control ILC function are largely unknown. Here, we integrate gene expression and chromatin accessibility data to infer regulatory interactions between transcription factors (TFs) and genes within intestinal type 1, 2, and 3 ILC subsets. We predicted the "core" TFs driving ILC identities, organized TFs into cooperative modules controlling distinct gene programs, and validated roles for c-MAF and BCL6 as regulators affecting type 1 and type 3 ILC lineages. The ILC network revealed alternative-lineage-gene repression, a mechanism that may contribute to reported plasticity between ILC subsets. By connecting TFs to genes, the TRNs suggest means to selectively regulate ILC effector functions, while our network approach is broadly applicable to identifying regulators in other in vivo cell populations.
Asunto(s)
Intestinos/fisiología , Subgrupos Linfocitarios/fisiología , Linfocitos/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Plasticidad de la Célula , Ensamble y Desensamble de Cromatina , Represión Epigenética , Redes Reguladoras de Genes , Inmunidad Innata , Inmunomodulación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-maf/genética , TranscriptomaRESUMEN
Whereas the actions of enhancers in gene transcriptional regulation are well established, roles of JmjC-domain-containing proteins in mediating enhancer activation remain poorly understood. Here, we report that recruitment of the JmjC-domain-containing protein 6 (JMJD6) to estrogen receptor alpha (ERα)-bound active enhancers is required for RNA polymerase II recruitment and enhancer RNA production on enhancers, resulting in transcriptional pause release of cognate estrogen target genes. JMJD6 is found to interact with MED12 in the mediator complex to regulate its recruitment. Unexpectedly, JMJD6 is necessary for MED12 to interact with CARM1, which methylates MED12 at multiple arginine sites and regulates its chromatin binding. Consistent with its role in transcriptional activation, JMJD6 is required for estrogen/ERα-induced breast cancer cell growth and tumorigenesis. Our data have uncovered a critical regulator of estrogen/ERα-induced enhancer coding gene activation and breast cancer cell potency, providing a potential therapeutic target of ER-positive breast cancers.
Asunto(s)
Neoplasias de la Mama/enzimología , Proliferación Celular , Receptor alfa de Estrógeno/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Complejo Mediador/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Activación Transcripcional , Animales , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Estradiol/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Células MCF-7 , Complejo Mediador/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Unión Proteica , Transporte de Proteínas , Proteína-Arginina N-Metiltransferasas/genética , Transducción de Señal , Activación Transcripcional/efectos de los fármacosRESUMEN
The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) in depression is a topic of debate, and the underlying mechanisms remain largely unclear. We now elucidate hippocampal excitation-inhibition (E/I) balance underlies the regulatory effects of 5-HT2CR in depression. Molecular biological analyses showed that chronic mild stress (CMS) reduced the expression of 5-HT2CR in hippocampus. We revealed that inhibition of 5-HT2CR induced depressive-like behaviors, reduced GABA release and shifted the E/I balance towards excitation in CA3 pyramidal neurons by using behavioral analyses, microdialysis coupled with mass spectrum, and electrophysiological recording. Moreover, 5-HT2CR modulated neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS (CAPON) interaction through influencing intracellular Ca2+ release, as determined by fiber photometry and coimmunoprecipitation. Notably, disruption of nNOS-CAPON by specific small molecule compound ZLc-002 or AAV-CMV-CAPON-125C-GFP, abolished 5-HT2CR inhibition-induced depressive-like behaviors, as well as the impairment in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly-mediated GABA vesicle release and a consequent E/I imbalance. Importantly, optogenetic inhibition of CA3 GABAergic neurons prevented the effects of AAV-CMV-CAPON-125C-GFP on depressive behaviors in the presence of 5-HT2CR antagonist. Conclusively, our findings disclose the regulatory role of 5-HT2CR in depressive-like behaviors and highlight the hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioral consequences of 5-HT2CR inhibition.
RESUMEN
In this Letter, the 'Competing interests' statement should have stated: 'D.R.L. consults for and has equity in Vedanta Biosciences.' The original Letter has not been corrected.
RESUMEN
Massively parallel sequencing allows for integrated genotyping of different types of forensic markers, which reduces DNA consumption, simplifies experimental processes, and provides additional sequence-based genetic information. The STRseqTyper122 kit genotypes 63 autosomal STRs, 16 X-STRs, 42 Y-STRs, and the Amelogenin locus. Amplicon sizes of 117 loci were below 300 bp. In this study, MiSeq FGx sequencing metrics for STRseqTyper122 were presented. The genotyping accuracy of this kit was examined by comparing to certified genotypes of NIST standard reference materials and results from five capillary electrophoresis-based kits. The sensitivity of STRseqTyper122 reached 125 pg, and > 80% of the loci were correctly called with 62.5 pg and 31.25 pg input genomic DNA. Repeatability, species specificity, and tolerance for DNA degradation and PCR inhibitors of this kit were also evaluated. STRseqTyper122 demonstrated reliable performance with routine case-work samples and provided a powerful tool for forensic applications.
Asunto(s)
Dermatoglifia del ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite , Humanos , Dermatoglifia del ADN/métodos , Amelogenina/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos , Genotipo , Reacción en Cadena de la Polimerasa , Especificidad de la Especie , Masculino , Animales , Degradación Necrótica del ADN , Electroforesis Capilar , FemeninoRESUMEN
The thymus, a site to culture the naïve T lymphocytes, is susceptible to atrophy or involution due to aging, inflammation, and oxidation. Epigallocatechin-3-gallate (EGCG) has been proven to possess anti-inflammatory, antioxidant, and antitumor activity. Here, we investigate the effects of EGCG on thymic involution induced by lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria. The methodology included an in vivo experiment on female Kunming mice exposed to LPS and EGCG. Morphological assessment of thymic involution, immunohistochemical detection, and thymocyte subsets analysis by flow cytometry were further carried out to evaluate the potential role of EGCG on the thymus. As a result, we found that EGCG alleviated LPS-induced thymic atrophy, increased mitochondrial membrane potential and superoxide dismutase levels, and decreased malondialdehyde and reactive oxygen species levels. In addition, EGCG pre-supplement restored the ratio of thymocyte subsets, the expression of autoimmune regulator, sex-determining region Y-box 2, and Nanog homebox, and reduced the number of senescent cells and collagen fiber deposition. Western blotting results indicated that EGCG treatment elevated LPS-induced decrease in pAMPK, Sirt1 protein expression. Collectively, EGCG relieved thymus architecture and function damaged by LPS via regulation of AMPK/Sirt1 signaling pathway. Our findings may provide a new strategy on protection of thymus from involution caused by LPS by using EGCG. And EGCG might be considered as a potential agent for the prevention and treatment of thymic involution.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Catequina , Lipopolisacáridos , Transducción de Señal , Sirtuina 1 , Timo , Animales , Catequina/análogos & derivados , Catequina/farmacología , Sirtuina 1/metabolismo , Ratones , Femenino , Timo/efectos de los fármacos , Timo/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , AtrofiaRESUMEN
PURPOSE: To investigate the effect of azilsartan on myocardial remodeling after acute myocardial infarction (AMI). METHODS: A total of 200 AMI patients under percutaneous coronary intervention (PCI) were selected from the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University from Jan 2021 to Dec 2021. The subjects were randomly divided to take either azilsartan or benazepril. Serum C1q tumor necrosis factor-associated protein 1 (CTRP1) levels were detected in all subjects after admission, and the indices of left ventricular end-diastolic volume (LVEDV), left ventricular end-diastolic diameter (LVEDD), and left ventricular ejection fraction (LVEF) were measured by using echocardiography. At the follow-up of 6 months and 1 year after PCI, the differences in CTRP1 and echocardiogram indices between the two groups were compared, and the influencing factors of myocardial remodeling after acute myocardial infarction were analyzed. RESULTS: The levels of LVEDV and CTRP1 in all subjects at 6 months and 1 year after PCI were lower than those before discharge, and the LVEDV in the azilsartan group at 6 months and 1 year after PCI was lower than that in the benazepril group. An improvement in myocardial remodeling was obviously observed within 6 months after PCI, but the effect declined over time. CONCLUSIONS: Azilsartan can improve myocardial remodeling after acute myocardial infarction. CTRP1 may become an effective target for the prevention and treatment of myocardial remodeling after acute myocardial infarction.
Asunto(s)
Bencimidazoles , Infarto del Miocardio , Oxadiazoles , Intervención Coronaria Percutánea , Humanos , Volumen Sistólico , Función Ventricular Izquierda , Infarto del Miocardio/tratamiento farmacológicoRESUMEN
BACKGROUND: Severe asthma, which differs significantly from typical asthma, involves specific molecular biomarkers that enhance our understanding and diagnostic capabilities. The objective of this study is to assess the biological processes underlying severe asthma and to detect key molecular biomarkers. METHODS: We used Weighted Gene Co-Expression Network Analysis (WGCNA) to detect hub genes in the GSE143303 dataset and indicated their functions and regulatory mechanisms using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) annotations. In the GSE147878 dataset, we used Gene Set Enrichment Analysis (GSEA) to determine the regulatory directions of gene sets. We detected differentially expressed genes in the GSE143303 and GSE64913 datasets, constructed a Least Absolute Shrinkage and Selection Operator (LASSO) regression model, and validated the model using the GSE147878 dataset and real-time quantitative PCR (RT-qPCR) to confirm the molecular biomarkers. RESULTS: Using WGCNA, we discovered modules that were strongly correlated with clinical features, specifically the purple module (r = 0.53) and the midnight blue module (r = -0.65). The hub genes within these modules were enriched in pathways related to mitochondrial function and oxidative phosphorylation. GSEA in the GSE147878 dataset revealed significant enrichment of upregulated gene sets associated with oxidative phosphorylation and downregulated gene sets related to asthma. We discovered 12 commonly regulated genes in the GSE143303 and GSE64913 datasets and developed a LASSO regression model. The model corresponding to lambda.min selected nine genes, including TFCP2L1, KRT6A, FCER1A, and CCL5, which demonstrated predictive value. These genes were significantly upregulated or under expressed in severe asthma, as validated by RT-qPCR. CONCLUSION: Mitochondrial abnormalities affecting oxidative phosphorylation play a critical role in severe asthma. Key molecular biomarkers like TFCP2L1, KRT6A, FCER1A, and CCL5, are essential for detecting severe asthma. This research significantly enhances the understanding and diagnosis of severe asthma.
RESUMEN
Both microbial and host genetic factors contribute to the pathogenesis of autoimmune diseases. There is accumulating evidence that microbial species that potentiate chronic inflammation, as in inflammatory bowel disease, often also colonize healthy individuals. These microorganisms, including the Helicobacter species, can induce pathogenic T cells and are collectively referred to as pathobionts. However, how such T cells are constrained in healthy individuals is not yet understood. Here we report that host tolerance to a potentially pathogenic bacterium, Helicobacter hepaticus, is mediated by the induction of RORγt+FOXP3+ regulatory T (iTreg) cells that selectively restrain pro-inflammatory T helper 17 (TH17) cells and whose function is dependent on the transcription factor c-MAF. Whereas colonization of wild-type mice by H. hepaticus promoted differentiation of RORγt-expressing microorganism-specific iTreg cells in the large intestine, in disease-susceptible IL-10-deficient mice, there was instead expansion of colitogenic TH17 cells. Inactivation of c-MAF in the Treg cell compartment impaired differentiation and function, including IL-10 production, of bacteria-specific iTreg cells, and resulted in the accumulation of H. hepaticus-specific inflammatory TH17 cells and spontaneous colitis. By contrast, RORγt inactivation in Treg cells had only a minor effect on the bacteria-specific Treg and TH17 cell balance, and did not result in inflammation. Our results suggest that pathobiont-dependent inflammatory bowel disease is driven by microbiota-reactive T cells that have escaped this c-MAF-dependent mechanism of iTreg-TH17 homeostasis.
Asunto(s)
Colitis/inmunología , Colitis/microbiología , Helicobacter hepaticus/inmunología , Tolerancia Inmunológica , Intestinos/inmunología , Intestinos/microbiología , Proteínas Proto-Oncogénicas c-maf/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Bioingeniería , Colitis/patología , Femenino , Factores de Transcripción Forkhead/metabolismo , Helicobacter hepaticus/genética , Helicobacter hepaticus/patogenicidad , Homeostasis , Interacciones Huésped-Patógeno , Interleucina-10/biosíntesis , Interleucina-10/deficiencia , Interleucina-10/inmunología , Masculino , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-maf/deficiencia , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Células Th17/citología , Células Th17/inmunologíaRESUMEN
This study introduces an innovative energy harvesting system designed for industrial applications such as fluid pipelines, air conditioning ducts, sewer systems, and subsea oil pipelines. The system integrates magneto-electric flow coupling and utilizes a dynamic vibration absorber (DVA) to mitigate the vibrations induced by fluid flow while simultaneously harvesting energy through magnetic dipole-dipole interactions in a vibration energy harvester (VEH). The theoretical models, based on Hamilton's Principle and the Biot-Savart Law, were validated through comprehensive experiments. The results indicate the superior performance of the small-magnet system over the large-magnet system in both damping and power generation. The study analyzed the frequency response and energy conversion efficiency across different parameters, including the DVA mass, spring constant, and placement location. The experimental findings demonstrated significant vibration reduction and increased voltage output, validating the theoretical model. This research offers new avenues for energy harvesting systems in pipeline infrastructures, potentially enhancing energy efficiency and structural integrity.
RESUMEN
Neijiang (NJ) and Yacha (YC) are two indigenous pig breeds in the Sichuan basin of China, displaying higher resistance to diseases, lower lean ratio, and slower growth rate than the commercial Western pig breed Yorkshire (YS). The molecular mechanisms underlying the differences in growth and development between these pig breeds are still unknown. In the present study, five pigs from NJ, YC, and YS breeds were subjected to the whole genome resequencing, and then the differential single-nucleotide polymorphisms (SNPs) were screened using a 10-kb window sliding in 1-kb step using the Fst method. Finally, 48,924, 48,543, and 46,228 nonsynonymous single-nucleotide polymorphism loci (nsSNPs) were identified between NJ and YS, NJ and YC, and YC and YS, which highly or moderately affected 2,490, 800, and 444 genes, respectively. Moreover, three nsSNPs were detected in the genes of acetyl-CoA acetyltransferase 1 (ACAT1) insulin-like growth factor 2 receptor (IGF2R), insulin-like growth factor 2 and mRNA-binding protein 3 (IGF2BP3), which potentially affected the transformation of acetyl-CoA to acetoacetyl-CoA and the normal functions of the insulin signaling pathways. Moreover, serous determinations revealed significantly lower acetyl-CoA content in YC than in YS, supporting that ACAT1 might be a reason explaining the differences in growth and development between YC and YS breeds. Contents of phosphatidylcholine (PC) and phosphatidic acid (PA) significantly differed between the pig breeds, suggesting that glycerophospholipid metabolism might be another reason for the differences between Chinese and Western pig breeds. Overall, these results might contribute basic information to understand the genetic differences determining the phenotypical traits in pigs.
Asunto(s)
Porcinos , Animales , Acetilcoenzima A , Genoma , Polimorfismo de Nucleótido Simple , Porcinos/genética , Porcinos/crecimiento & desarrolloRESUMEN
MOTIVATION: Machine learning models for predicting cell-type-specific transcription factor (TF) binding sites have become increasingly more accurate thanks to the increased availability of next-generation sequencing data and more standardized model evaluation criteria. However, knowledge transfer from data-rich to data-limited TFs and cell types remains crucial for improving TF binding prediction models because available binding labels are highly skewed towards a small collection of TFs and cell types. Transfer prediction of TF binding sites can potentially benefit from a multitask learning approach; however, existing methods typically use shallow single-task models to generate low-resolution predictions. Here, we propose NetTIME, a multitask learning framework for predicting cell-type-specific TF binding sites with base-pair resolution. RESULTS: We show that the multitask learning strategy for TF binding prediction is more efficient than the single-task approach due to the increased data availability. NetTIME trains high-dimensional embedding vectors to distinguish TF and cell-type identities. We show that this approach is critical for the success of the multitask learning strategy and allows our model to make accurate transfer predictions within and beyond the training panels of TFs and cell types. We additionally train a linear-chain conditional random field (CRF) to classify binding predictions and show that this CRF eliminates the need for setting a probability threshold and reduces classification noise. We compare our method's predictive performance with two state-of-the-art methods, Catchitt and Leopard, and show that our method outperforms previous methods under both supervised and transfer learning settings. AVAILABILITY AND IMPLEMENTATION: NetTIME is freely available at https://github.com/ryi06/NetTIME and the code is also archived at https://doi.org/10.5281/zenodo.6994897. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Factores de Transcripción , Emparejamiento Base , Sitios de Unión , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Unión Proteica , Factores de Transcripción/metabolismoRESUMEN
MOTIVATION: Gene regulatory networks define regulatory relationships between transcription factors and target genes within a biological system, and reconstructing them is essential for understanding cellular growth and function. Methods for inferring and reconstructing networks from genomics data have evolved rapidly over the last decade in response to advances in sequencing technology and machine learning. The scale of data collection has increased dramatically; the largest genome-wide gene expression datasets have grown from thousands of measurements to millions of single cells, and new technologies are on the horizon to increase to tens of millions of cells and above. RESULTS: In this work, we present the Inferelator 3.0, which has been significantly updated to integrate data from distinct cell types to learn context-specific regulatory networks and aggregate them into a shared regulatory network, while retaining the functionality of the previous versions. The Inferelator is able to integrate the largest single-cell datasets and learn cell-type-specific gene regulatory networks. Compared to other network inference methods, the Inferelator learns new and informative Saccharomyces cerevisiae networks from single-cell gene expression data, measured by recovery of a known gold standard. We demonstrate its scaling capabilities by learning networks for multiple distinct neuronal and glial cell types in the developing Mus musculus brain at E18 from a large (1.3 million) single-cell gene expression dataset with paired single-cell chromatin accessibility data. AVAILABILITY AND IMPLEMENTATION: The inferelator software is available on GitHub (https://github.com/flatironinstitute/inferelator) under the MIT license and has been released as python packages with associated documentation (https://inferelator.readthedocs.io/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Redes Reguladoras de Genes , Programas Informáticos , Animales , Ratones , Genómica , Genoma , CromatinaRESUMEN
BACKGROUND: Colorectal cancer (CRC) is a highly prevalent cancer type with limited targeted therapies available and 5-year survival rate, particularly for late-stage patients. There have been numerous attempts to repurpose drugs to tackle this problem. It has been reported that autophagy inducers could augment the effect of certain chemotherapeutic agents by enhancing immunogenic cell death (ICD). METHODS: In this study, we employed bioinformatics tools to identify thioridazine (THD), an antipsychotic drug, and found that it could induce autophagy and ICD in CRC. Then in vitro and in vivo experiments were performed to further elucidate the molecular mechanism of THD in CRC. RESULTS: THD was found to induce endoplasmic reticulum (ER) stress in CRC cells by activating the eIF2α/ATF4/CHOP axis and facilitating the accumulation of secretory autophagosomes, leading to ICD. In addition, THD showed a remarkable ICD-activating effect when combined with oxaliplatin (OXA) to prevent tumor progression in the mouse model. CONCLUSIONS: Together, our findings suggest that the repurposed function of THD in inhibiting CRC involves the upregulation of autophagosomes and ER stress signals, promoting the release of ICD markers, and providing a potential candidate to enhance the clinical outcome for CRC treatment. Video Abstract.
Asunto(s)
Neoplasias Colorrectales , Tioridazina , Animales , Ratones , Tioridazina/farmacología , Factor 2 Eucariótico de Iniciación/metabolismo , Reposicionamiento de Medicamentos , Muerte Celular Inmunogénica , Autofagia , Neoplasias Colorrectales/tratamiento farmacológico , Apoptosis , Línea Celular TumoralRESUMEN
This study aims to enhance conventional vibration energy harvesting systems (VEHs) by repositioning the piezoelectric patch (PZT) in the middle of a fixed-fixed elastic steel sheet instead of the root, as is commonly the case. The system is subjected to an axial simple harmonic force at one end to induce transversal vibration and deformation. To further improve power conversion, a baffle is strategically installed at the point of maximum deflection, introducing a slapping force to augment electrical energy harvesting. Employing the theory of nonlinear beams, the equation of motion for this nonlinear elastic beam is derived, and the method of multiple scales (MOMS) is used to analyze the phenomenon of parametric excitation. This study demonstrates through experiments and theoretical analysis that the second mode yields better power generation benefits than the first mode. Additionally, the voltage generation benefits of the enhanced system with the added baffle (slapping force) surpass those of traditional VEH systems. Overall, the proposed model proves feasible and holds promising potential for efficient vibration energy harvesting applications in various industrial sectors.
RESUMEN
Alzheimer's disease (AD) remains a leading cause of dementia and no therapy that reverses underlying neurodegeneration is available. Recent studies suggest the protective role of artemisinin, an antimalarial drug, in neurological disorders. In this study, we investigated the therapeutic potential of artesunate, a water-soluble derivative of artemisinin, on amyloid-beta (Aß)-treated challenged microglial BV-2, neuronal N2a cells, and the amyloid precursor protein/presenilin (APP/PS1) mice model. We found that Aß significantly induced multiple AD-related phenotypes, including increased expression/production of pro-inflammatory cytokines from microglial cells, enhanced cellular and mitochondrial production of reactive oxygen species, promoted mitochondrial fission, inhibited mitochondrial fusion, suppressed mitophagy or biogenesis in both cell types, stimulated apoptosis of neuronal cells, and microglia-induced killing of neurons. All these in vitro phenotypes were attenuated by artesunate. In addition, the over-expression of the mitochondrial fission protein Drp-1, or down-regulation of the mitochondrial fusion protein OPA-1 both reduced the therapeutic benefits of artesunate. Artesunate also alleviated AD phenotypes in APP/PS1 mice, reducing Aß deposition, and reversing deficits in memory and learning. Artesunate protects neuronal and microglial cells from AD pathology, both in vitro and in vivo. Maintaining mitochondrial dynamics and simultaneously targeting multiple AD pathogenic mechanisms are associated with the protective effects of artesunate. Consequently, artesunate may become a promising therapeutic for AD.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Artesunato/metabolismo , Artesunato/farmacología , Artesunato/uso terapéutico , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Presenilina-1/genéticaRESUMEN
Head and neck cancers are a type of life-threatening cancers characterized by an immunosuppressive tumor microenvironment. Only less than 20% of the patients respond to immune checkpoint blockade therapy, indicating the need for a strategy to increase the efficacy of immunotherapy for this type of cancers. Previously, we identified a type B CpG-oligodeoxynucleotide (CpG-ODN) called CpG-2722, which has the universal activity of eliciting an immune response in grouper, mouse, and human cells. In this study, we further characterized and compared its cytokine-inducing profiles with different types of CpG-ODNs. The antitumor effect of CpG-2722 was further investigated alone and in combination with an immune checkpoint inhibitor in a newly developed syngeneic orthotopic head and neck cancer animal model. Along with other inflammatory cytokines, CpG-2722 induces the gene expressions of interleukin-12 and different types of interferons, which are critical for the antitumor response. Both CpG-2722 and anti-programmed death (PD)-1 alone suppressed tumor growth. Their tumor suppression efficacies were further enhanced when CpG-2722 and anti-PD-1 were used in combination. Mechanistically, CpG-2722 shaped a tumor microenvironment that is favorable for the action of anti-PD-1, which included promoting the expression of different cytokines such as IL-12, IFN-ß, and IFN-γ, and increasing the presence of plasmacytoid dendritic cells, M1 macrophages, and CD8 positive T cells. Overall, CpG-2722 provided a priming effect for CD8 positive T cells by sharpening the tumor microenvironment, whereas anti-PD-1 released the brake for their tumor-killing effect, resulting in an enhanced efficacy of the combined CpG-2722 and anti-PD-1.
Asunto(s)
Neoplasias de Cabeza y Cuello , Inhibidores de Puntos de Control Inmunológico , Animales , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interleucina-12/farmacología , Ratones , Oligodesoxirribonucleótidos/farmacología , Microambiente TumoralRESUMEN
The excellent molecular recognition capabilities of monoclonal antibodies (mAbs) have opened up exciting opportunities for biotherapeutic discovery. Taking advantage of the full potential of this tool necessitates affinity ligands capable of conjugating directly with small molecules to a defined degree of biorthogonality, especially when modifying natural Abs. Herein, a bioorthogonal boronate-affinity-based Ab ligand featuring a 4-(dimethylamino)pyridine and an S-aryl thioester to label full-length Abs is reported. The photoactivatable linker in the acyl donor facilitated purification of azide-labelled Ab (N3 -Ab) was quantitatively cleaved upon brief exposure to UV light while retaining the original Ab activity. Click reactions enabled the precise addition of biotin, a fluorophore, and a pharmacological agent to the purified N3 -Abs. The resulting immunoconjugate showed selectivity against targeted cells. Bioorthogonal traceless design and reagentless purification allow this strategy to be a powerful tool to engineer native antibodies amenable to therapeutic intervention.
Asunto(s)
Inmunoconjugados , Acilación , Anticuerpos Monoclonales , Azidas , Colorantes FluorescentesRESUMEN
BACKGROUND: Despite advances in treatment, patients with refractory colorectal cancer (CRC) still have poor long-term survival, so there is a need for more effective therapeutic options. METHODS: To evaluate the HDAC8 inhibition efficacy as a CRC treatment, we examined the effects of various HDAC8 inhibitors (HDAC8i), including BMX (NBM-T-L-BMX-OS01) in combination with temozolomide (TMZ) or other standard CRC drugs on p53 mutated HT29 cells, as well as wild-type p53 HCT116 and RKO cells. RESULTS: We showed that HDAC8i with TMZ cotreatment resulted in HT29 arrest in the S and G2/M phase, whereas HCT116 and RKO arrest in the G0/G1 phase was accompanied by high sub-G1. Subsequently, this combination approach upregulated p53-mediated MGMT inhibition, leading to apoptosis. Furthermore, we observed the cotreatment also enabled triggering of cell senescence and decreased expression of stem cell biomarkers. Mechanistically, we found down-expression levels of ß-catenin, cyclin D1 and c-Myc via GSK3ß/ß-catenin signaling. Intriguingly, autophagy also contributes to cell death under the opposite status of ß-catenin/p62 axis, suggesting that there exists a negative feedback regulation between Wnt/ß-catenin and autophagy. Consistently, the Gene Set Enrichment Analysis (GSEA) indicated both apoptotic and autophagy biomarkers in HT29 and RKO were upregulated after treating with BMX. CONCLUSIONS: BMX may act as a HDAC8 eraser and in combination with reframed-TMZ generates a remarkable synergic effect, providing a novel therapeutic target for various CRCs. Video Abstract.
Asunto(s)
Apoptosis , Neoplasias Colorrectales , Inhibidores de Histona Desacetilasas , Temozolomida , Humanos , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Temozolomida/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Vía de Señalización Wnt , Inhibidores de Histona Desacetilasas/farmacología , Células HT29RESUMEN
A broadband and ultra-compact polarization splitter-rotator based on diagonally overlapped bi-layer architecture and an asymmetrical directional coupler is proposed on a silicon-on-insulator platform. By leveraging the structure over supermode theory, a 1-dB bandwidth of 220 nm, extinction ratio (ER) of <19dB, and cross talk (XT) of <-15.85dB within the span of 1400-1700 nm and coupling length of 4.62 µm are achieved. In addition, TM0-TE0 conversion loss of â¼0.19dB, ER of 35.88 dB, and XT of -30.46dB can be obtained at 1550 nm. The fabrication tolerances are also analyzed, indicating that the insertion losses remain below 1 dB over 1460-1620 nm in terms of width errors and layer-to-layer misalignments within ±10nm. The results show that the proposed device is very suitable to utilize between fibers and for polarization diversity of on-chip systems for broadband operation as well as ultra-compact integration.