Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Lett Appl Microbiol ; 76(5)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37133416

RESUMEN

In this research, the synbiotic effects of the probiotic Lactiplantibacillus plantarum YW11 and lactulose on intestinal morphology, colon function, and immune activity were evaluated in a mouse model of UC induced by dextran sulfate sodium (DSS). The results revealed that L. plantarum YW11 in combination with lactulose decreased the severity of colitis in mice and improved the structure of the damaged colon, as assessed using colon length and disease condition. Moreover, colonic levels of pro-inflammatory cytokines (IL-1ß, IL-6, IL-12, TNF-α, and IFN-γ) were significantly lower and anti-inflammatory factors (IL-10) were significantly higher following the synbiotic supplementation. The synbiotic also exerted antioxidant effects by up-regulating SOD and CAT levels and down-regulating MDA levels in colon tissue. It could also reduce the relative expression of iNOS mRNA and increase the relative expression of nNOS and eNOS mRNA. Western blot confirmed the increased expression of c-Kit, IκBα, and SCF and significantly reduced expression of the NF-κB protein. Therefore, the combination of L. plantarum YW11 and lactulose exerted therapeutic effects mainly through the NF-κB anti-inflammatory pathway, which represented a novel synbiotic approach in the prevention of colonic inflammation.


Asunto(s)
Colitis Ulcerosa , Probióticos , Simbióticos , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/prevención & control , Lactulosa/metabolismo , Lactulosa/farmacología , Lactulosa/uso terapéutico , FN-kappa B/genética , FN-kappa B/metabolismo , Sulfato de Dextran/toxicidad , Sulfato de Dextran/metabolismo , Colon/metabolismo , Antiinflamatorios/uso terapéutico , Probióticos/uso terapéutico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
J Dairy Sci ; 102(1): 26-36, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30527985

RESUMEN

The present study investigated the effects of Lactobacillus plantarum YS2 (LP-YS2) that was isolated from yak yogurt on activated carbon-induced constipation in Kunming (KM) mice. The KM mice were orally administered LP-YS2 and reference strain Lactobacillus delbrueckii ssp. bulgaricus. Administration of LP-YS2 [1.0 × 109 cfu/kg of body weight (BW)] promoted gastrointestinal peristalsis and reduced the first black stool defecation time (129 min), which clearly defines attenuation of the voiding difficulty in mice with constipation. The LP-YS2 treatment also increased the serum level of motilin (MTL; 178.2 pg/mL), gastrin (69.4 pg/mL), acetylcholine (Ach; 30.1 pg/mL), substance P (SP; 57.6 pg/mL), and vasoactive intestinal peptide (VIP; 53.2 pg/mL) and reduced the somatostatin (SS, 32.6 pg/mL) levels compared with the L. delbrueckii ssp. bulgaricus treatment (MTL, 139.7 pg/mL; gastrin, 43.1 pg/mL; Ach, 15.9 pg/mL; SP, 43.6 pg/mL; VIP, 32.3 pg/mL; SS, 55.1 pg/mL) and the control (MTL, 105.3 pg/mL; gastrin, 26.7 pg/mL; Ach, 9.7 pg/mL; SP, 30.2 pg/mL; VIP, 21.0 pg/mL; SS, 70.5 pg/mL). The LP-YS2 treatment significantly increased the colonic mRNA and protein expression of c-Kit (CD117, cluster of differentiation 117; 2.87 times mRNA expression of the control group), stem cell factor (30.40 times mRNA expression of the control group), and glial cell-derived neurotrophic factor (29.97 times mRNA expression of the control group) in mice with constipation. In addition, LP-YS2 reduced the expression of transient receptor potential vanilloid 1 (0.42 times mRNA expression of the control group) and nitric oxide synthase (0.49 times mRNA expression of the control group) in constipated mice. These results demonstrate that LP-YS2 was able to attenuate the activated carbon-induced constipation in KM mice.


Asunto(s)
Estreñimiento/prevención & control , Lactobacillus plantarum/metabolismo , Yogur/microbiología , Animales , Antioxidantes/análisis , Biomarcadores/análisis , Peso Corporal , Bovinos , Carbón Orgánico/efectos adversos , Colon/metabolismo , Estreñimiento/inducido químicamente , Estreñimiento/terapia , Defecación , Tracto Gastrointestinal/metabolismo , Tránsito Gastrointestinal/fisiología , Intestino Delgado/metabolismo , Lactobacillus delbrueckii/metabolismo , Masculino , Ratones , Óxido Nítrico Sintasa/metabolismo , Peristaltismo/fisiología , Sustancia P/metabolismo
3.
J Dairy Sci ; 102(7): 5899-5912, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31103296

RESUMEN

Yogurt from Xinjiang, China, is a traditional and naturally fermented food, and abundant microorganisms are produced during its fermentation process. In this study, we carried out in vivo animal experiments to explore the effect of a newly isolated lactic acid bacterial strain, Lactobacillus plantarum KSFY02 (LP-KSFY02), on oxidative aging. We used d-galactose to induce oxidative aging in mice and analyzed the serum and tissues of those mice using molecular biology detection methods. The results showed that LP-KSFY02 could inhibit the decreases in the thymic, cerebral, cardiac, liver, spleen, and kidney indices of mice caused by oxidative aging. The LP-KSFY02 strain increased activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) and reduced levels of nitric oxide (NO) and malondialdehyde in the serum, liver, and spleen of the oxidative aging mice. Pathological observation demonstrated that LP-KSFY02 alleviated damage to the liver and spleen of oxidative aging mice. Quantitative PCR showed that LP-KSFY02 effectively upregulated mRNA expression of neuronal nitric oxide synthase (Nos1), endothelial nitric oxide synthase (Nos3), copper/zinc superoxide dismutase (Sod1), manganese superoxide dismutase (Sod2), catalase (Cat), heme oxygenase-1 (Hmox1), nuclear factor erythroid 2 related factor 2 (Nfe2l2), γ-glutamylcysteine synthetase (Gclm), and quinone oxidoreductase 1 (Nqo1) in mouse liver and spleen and downregulated expression of inducible nitric oxide synthase (Nos2). Western blot analysis revealed that LP-KSFY02 effectively upregulated protein expression of SOD1, SOD2, CAT, GSH1, and GSH2 in mouse liver and spleen tissues. Therefore, LP-KSFY02 can effectively prevent d-galactose-induced oxidative aging in mice. Its efficacy was superior to that of Lactobacillus delbrueckii ssp. bulgaricus (LDSB) and vitamin C, which are commonly used in the medical field as antioxidants. Thus, LP-KSFY02 is a high-quality strain with probiotic potential.


Asunto(s)
Envejecimiento/efectos de los fármacos , Galactosa/efectos adversos , Lactobacillus plantarum/química , Probióticos/farmacología , Sustancias Protectoras/farmacología , Yogur/microbiología , Animales , Femenino , Fermentación , Lactobacillus plantarum/clasificación , Masculino , Ratones , Oxidación-Reducción , Estrés Oxidativo , Probióticos/química , Sustancias Protectoras/química
4.
Molecules ; 24(6)2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30871261

RESUMEN

In this study, the protective effects of Kuding tea polyphenols (KTPs) on ultraviolet B (UVB)-induced skin injury of SKH1 hairless mice were studied. The ion precipitation method was used for extraction of polyphenols from Kuding tea. High-performance liquid chromatography showed that KTPs contains chlorogenic acid, cryptochlorogenic acid, isochlorogenic acid B, isochlorogenic acid A, and isochlorogenic acid C. SKH1 hairless mice were induced skin aging using 2.0 mW/s intensity of 90 mJ/cm² UV light once a day for seven weeks. The 2.5% and 5% KTPs solution was smeared on 2 cm² of back skin of skin aging mice twice a day. Mouse experiments showed that KTP strongly increased the serum levels of total superoxide dismutase (T-SOD) and catalase (CAT) and reduced those of malondialdehyde, interleukin 6 (IL-6), IL-1ß, and tumor necrosis factor alpha (TNF-α) in mice with UVB-induced skin damage. KTP also increased the levels of type 1 collagen (Col I), hydroxyproline, and hyaluronic acid and reduced those of Col III and hydrogen peroxide in the damaged skin tissues of mice. Pathological observations of tissues stained with H & E, Masson's trichrome, Verhoeff, and toluidine blue showed that KTPs could protect skin cells, collagen, and elastin and decrease the number of mast cells, thus inhibiting skin damage. Quantitative PCR and western blot assays showed that KTP upregulated the mRNA and protein expression of tissue inhibitor of metalloproteinase 1 (TIMP-1), TIMP-2, copper/zinc-SOD, manganese-SOD, CAT, and glutathione peroxidase and downregulated the expression of matrix metalloproteinase 2 (MMP-2) and MMP-9. In addition, the same concentration of KTP had stronger protective effects than vitamin C. The results of this study demonstrate that KTPs have good skin protective effects, as they are able to inhibit UVB-induced skin damage.


Asunto(s)
Fitoquímicos/administración & dosificación , Polifenoles/administración & dosificación , Envejecimiento de la Piel/efectos de los fármacos , Té/química , Animales , Catalasa/sangre , Ácido Clorogénico/administración & dosificación , Ácido Clorogénico/análogos & derivados , Ácido Clorogénico/química , Ácido Clorogénico/farmacología , Cromatografía Líquida de Alta Presión , Citocinas/sangre , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Pelados , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Polifenoles/química , Polifenoles/farmacología , Envejecimiento de la Piel/inmunología , Superóxido Dismutasa/sangre , Rayos Ultravioleta/efectos adversos
5.
Int J Mol Sci ; 19(8)2018 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-30060611

RESUMEN

The aim of this study was to investigate and compare the effects of heat-killed and live Lactobacillus on carbon tetrachloride (CCl4)-induced acute liver injury mice. The indexes evaluated included liver pathological changes, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the serum, related gene expression (IL-1ß, TNF-α, Bcl-2, and Bax), and related proteins levels (Bax, Bcl-2, Caspase 3, and NF-κB p65). Compared with the model group, the results indicated that the levels of ALT, AST, and MDA in the serum, the expression levels of IL-1ß, TNF-α, and Bax, and the protein levels of Bax, Caspase 3, and NF-κB p65 significantly decreased, and the pathologic damage degree all significantly reduced after live Lactobacillus fermentum (L-LF) and live Lactobacillus plantarum (L-LP) treatment. Additionally, the levels of SOD and GSH in the serum, the gene expression of Bcl-2, and the protein level of Bcl-2 significantly increased after L-LF and L-LP treatment. Although HK-LF and HK-LP could also have obvious regulating effects on some of the evaluated indexes (ALT, AST, the expression levels of TNF-α and Bax, and the protein level of Bcl-2) and play an important role in weakening liver damage, the regulating effects of L-LF or L-LP on these indexes were all better compared with the corresponding heat-killed Lactobacillus fermentum (HK-LF) and heat-killed Lactobacillus plantarum (HK-LP). Therefore, these results suggested that LF and LP have an important role in liver disease.


Asunto(s)
Tetracloruro de Carbono/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Lactobacillus plantarum , Limosilactobacillus fermentum , Probióticos/uso terapéutico , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Calor , Limosilactobacillus fermentum/citología , Limosilactobacillus fermentum/fisiología , Lactobacillus plantarum/citología , Lactobacillus plantarum/fisiología , Hígado/patología , Masculino , Ratones , Viabilidad Microbiana
6.
Molecules ; 23(2)2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370108

RESUMEN

Polysaccharides are closely associated with immune regulation, but there are different polysaccharide effects from different sources. In this study, the aim was to investigate the effect of tremella polysaccharides (TP) in cyclophosphamide-induced immunodeficient mice. We observed the thymus and spleen index, liver and spleen pathological changes, and the levels of IL-2, IL-12, INF-γ, TGF-ß and Ig G in serum, and we also noted the mRNA expression of IL-1ß, IL-4, IL-12 and TGF-ß in liver and spleen. Besides, we also measured the best effects of different doses of TP (Low-TP was 20 mg/kg·BW, Middle-TP was 40 mg/kg·BW, and High-TP was 80 mg/kg·BW) on cyclophosphamide-induced immunosuppressed mice. The results were remarkable, and suggested that TP had a significant effect for enhancing immunity in cyclophosphamide-induced immunosuppression, and the immune enhancement of High-TP had the best results in TP-treated mice. It could significantly increase the thymus and spleen index, alleviate pathological features of immunosuppression such as the arrangement of liver sinusoid and hepatic plates was disordered, massive inflammatory cells infiltrated and fatty degeneration of hepatocytes in liver, and red pulp and white pulp were intermixed, splenic corpuscles demolished and disappeared, splenic sinusoid extended, and lymphocytes of spleen were reduced in spleen. Besides, it could also up-regulate serum levels of IL-2, IL-12, INF-γ and Ig G, reduce the level of TGF-ß in serum, markedly promote mRNA expression of IL-1ß, IL-4 and IL-12 in liver and spleen, and suppress mRNA expression of TGF-ß. Above all, TP showed preventive effect for cyclophosphamide-induced immunosuppressed mice.


Asunto(s)
Basidiomycota/química , Ciclofosfamida/farmacología , Polisacáridos Fúngicos/farmacología , Factores Inmunológicos/farmacología , Inmunomodulación/efectos de los fármacos , Animales , Biomarcadores , Ciclofosfamida/efectos adversos , Citocinas/sangre , Citocinas/genética , Femenino , Polisacáridos Fúngicos/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Inmunoglobulina G/sangre , Factores Inmunológicos/química , Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Masculino , Ratones
7.
Molecules ; 23(11)2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30463304

RESUMEN

Chinese pickled cabbage is a traditional fermented food that contains abundant microbes produced during the process of fermentation. In this work, an in vivo animal study was conducted to investigate the effects of a newly isolated lactic acid bacterium (Lactobacillus plantarum CQPC11, LP-CQPC11) on d-galactose-induced oxidation and aging in mice. Analysis of the serum and tissue samples of these mice using molecular biology approaches showed that LP-CQPC11 suppressed the decrease in thymus, brain, heart, liver, spleen, and kidney indices caused by oxidation and aging. Furthermore, LP-CQPC11 increased the levels of SOD (superoxide dismutase), GSH-Px (glutathione peroxidase), and GSH (glutathione), whereas it reduced the levels of NO (nitric oxide) and MDA (malondialdehyde) in the serum, liver, and spleen of oxidation and aging mouse models. Pathological observation indicated that LP-CQPC11 alleviated the damage caused by oxidation and aging on the liver and spleen of mice. qPCR analysis indicated that LP-CQPC11 effectively upregulated the expression of nNOS (neuronal nitric oxide synthase), eNOS (endothelial nitric oxide synthase), Cu/Zn-SOD (cuprozinc-superoxide dismutase), Mn-SOD (manganese superoxide dismutase), CAT (catalase), HO-1 (heme oxygenase-1), Nrf2 (nuclear factor-erythroid 2 related factor 2), γ-GCS (γ-glutamylcysteine synthetase), and NQO1 (NAD(P)H dehydrogenase [quinone] 1), but downregulated the expression of iNOS (inducible nitric oxide synthase) in the mouse liver and spleen. Western blot analysis showed that LP-CQPC11 effectively upregulated SOD1 (Cu/Zn-SOD), SOD2 (Mn-SOD), CAT, GSH1 (c-glutamylcysteine synthetase), and GSH2 (glutathione synthetase) protein expression in mouse liver and spleen tissues. These findings suggest that LP-CQPC11 can effectively prevent d-galactose-induced oxidation and aging in mice, and the effect is even better than that of the commonly used Lactobacillus delbruechii subsp. bulgaricus (LDSB) and vitamin C in the industry. Thus, LP-CQPC11 may be potentially employed as a probiotic strain.


Asunto(s)
Envejecimiento/fisiología , Brassica/microbiología , Galactosa/farmacología , Lactobacillus plantarum/fisiología , Estrés Oxidativo , Envejecimiento/efectos de los fármacos , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Lactobacillus plantarum/aislamiento & purificación , Masculino , Ratones , Superóxido Dismutasa/metabolismo
8.
Molecules ; 23(11)2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388863

RESUMEN

Liubao tea is a type of traditional Chinese tea, belonging to the dark teas. This study is a basic research of the contained polyphenols (active substances) and detected preventive effects of polyphenols of raw Liubao tea (PRLT) on mouse gastric injuries induced by HCl/ethanol. High-pressure liquid chromatography was used to analyze the components of PRLT. Furthermore, a mouse gastric injury model was established to observe the preventive effects. PRLT was shown to contain gallic acid, EGC (epigallocatechin), catechin, caffeine, EC (epicatechin), EGCG (epigallocatechin gallate), GCG (gallocatechin gallate), and ECG (epicatechin gallate). The results of the in vivo study indicate that PRLT can inhibit the observed increase of gastric juice volume and decrease of gastric juice pH caused by gastric injury. PRLT can decrease the serum levels of IL-6 (interleukin-6), IL-12 (interleukin-12), TNF-α (tumor necrosis factor-α), and IFN-γ (interferon-γ) in mice with gastric injuries. Moreover, it can also increase the serum levels of SS (somatostatin) and VIP (vasoactive intestinal peptide) and reduce the serum levels of both SP (substance P) and ET-1 (endothelin-1). PRLT was also shown to increase SOD (superoxide dismutase) and GSH (glutathione) levels and decrease MDA (malondialdehyde) level. The detection of mRNA and protein in gastric tissues indicates that PRLT could also up-regulate the expression of Cu/Zn-SOD (copper/zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), CAT (catalase), nNOS (neuronal nitric oxide synthase), and eNOS (endothelial nitric oxide synthase) and down-regulate the expression of both iNOS (inducible nitric oxide synthase) and COX-2 (cyclooxygenase-2). Thus, PRLT possess a good preventive effect on gastric injury, which is directly related to the contained active substance. PRLT show good anti-oxidative and preventive effect in gastric injury and offer promising application value.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Gastritis/etiología , Gastritis/metabolismo , Polifenoles/química , Polifenoles/farmacología , Té/química , Animales , Biomarcadores , Biopsia , Citocinas/metabolismo , Modelos Animales de Enfermedad , Etanol/efectos adversos , Jugo Gástrico/metabolismo , Gastritis/patología , Regulación de la Expresión Génica , Ácido Clorhídrico/efectos adversos , Mediadores de Inflamación/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Molecules ; 23(1)2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29351230

RESUMEN

Kudingcha is a traditional Chinese tea, and insect tea is a special drink produced by the metabolism of insect larvae using the raw Kuding tea. Insect tea polyphenols (ITP) and its raw tea (Kuding tea) polyphenols (KTP) are high-purity polyphenols extracted by centrifuge precipitation. The present study was designed to compare the antioxidative effects of insect tea polyphenols (ITP) and its raw tea (Kuding tea) polyphenols (KTP) on d-galactose-induced oxidation in Kunming (KM) mice. KM mice were treated with ITP (200 mg/kg) and KTP (200 mg/kg) by gavage, and vitamin C (VC, 200 mg/kg) was also used as a positive control by gavage. After determination in serum, liver and spleen, ITP-treated mice showed higher superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) activities and lower nitric oxide (NO), malonaldehyde (MDA) activities than VC-treated mice, KTP-treated mice and untreated oxidation mice (control group). By H&E section observation, the mice induced by d-galactose-induced oxidation showed more changes than normal mice, and oxidative damage appeared in liver and spleen tissues; ITP, VC and KTP improved oxidative damage of liver and spleen tissues, and the effects of ITP were better than VC and KTP. Using quantitative polymerase chain reaction (qPCR) and western blot experiments, it was observed that ITP could increase the mRNA and protein expression of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), manganese superoxide dismutase (Mn-SOD), cupro/zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), heme oxygenase-1 (HO-1), nuclear factor erythroid 2 related factor 2 (Nrf2), gamma glutamylcysteine synthetase (γ-GCS), and NAD(P)H:quinone oxidoreductase 1 (NQO1) and reduce inducible nitric oxide synthase (iNOS) expression in liver and spleen tissues compared to the control group. These effects were stronger than for VC and KTP. Both ITP and KTP had good antioxidative effects, and after the transformation of insects, the effects of ITP were better than that of KTP and even better than VC. Thus, ITP can be used as an antioxidant and anti-ageing functional food.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Insectos/química , Polifenoles/química , Polifenoles/farmacología , Té/química , Animales , Antioxidantes/administración & dosificación , Biomarcadores/sangre , Expresión Génica , Glutatión/sangre , Glutatión Peroxidasa/sangre , Inmunohistoquímica , Hígado/metabolismo , Hígado/patología , Malondialdehído/sangre , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico/sangre , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Fitoquímicos/química , Polifenoles/administración & dosificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/química , Superóxido Dismutasa/sangre
10.
Molecules ; 23(5)2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29751513

RESUMEN

This study investigated the enhanced antiproliferative effect of Lactobacillus casei strain Shirota (LcS) on geniposide actions in human oral squamous carcinoma HSC-3 cells. An MTT assay, flow cytometry, qPCR assay, western blot and HPLC were used for this study. The concentration of 1.0 × 106 CFU/mL of LcS had no effect on the HOK normal oral epithelial cells and HSC-3 cancer cells. The 25 and 50 µg/mL geniposide concentrations also had no impact on HOK normal oral epithelial cells, but they had remarkable inhibitory effects on the growth of HSC-3 cancer cells, which are enhanced in the presence of LcS. By the flow cytometry assay, the LcS-geniposide-H (1.0 × 106 CFU/mL LcS and 50 µg/mL geniposide)-treated HSC-3 cancer cells had the largest number of cells undergoing apoptosis compared to cells treated with other combinationsand obviously more than cells treated with only geniposide-H (50 µg/mL geniposide). Geniposide-H could increase the mRNA and protein expressions of caspase-3, caspase-8, caspase-9, Bax, p53, p21, IκB-α, Fas, FasL, TIMP-1, and TIMP-2 as well as decrease those of Bcl-2, Bcl-xL, HIAP-1, HIAP-2, NF-κB, COX-2, iNOS, MMP-2, and MMP-9 compared to other groups of cells, and LcS further enhanced these changes, with results that are greater than for the cells treated with only a high concentration of geniposide. The results of this study show thatLcS enhanced the antiproliferative effect of geniposide in HSC-3 cancer cells.


Asunto(s)
Antineoplásicos Fitogénicos/metabolismo , Antineoplásicos Fitogénicos/farmacología , Iridoides/metabolismo , Iridoides/farmacología , Lacticaseibacillus casei/metabolismo , Biomarcadores de Tumor , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Caspasas/genética , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo
11.
Pak J Pharm Sci ; 29(3): 935-40, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27166556

RESUMEN

The aim of this study was to investigate the potential anti-inflammatory effect of Conyzacanadeusis methanol extract (CME) using a cell model of RAW264.7 murine macrophage cell stimulated with lipopolysaccharide (LPS)(1µg/ml). Co-treatment with different concentrations (10, 50 and 100µg/ml) of CME was concentration-dependently reduced the LPS-induced generation of prostaglandin E2 (PGE2), nitric oxide (NO) tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6. In addition, CME also reduced the mRNA expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide (iNOS), TNF-α, IL-1ß and IL-6 in LPS-stimulated RAW264.7 cells. These results suggested that CME showed an anti-inflammatory activity through reduced the mRNA expression of COX-2, iNOS, TNF-α IL-1ß and IL-6 and also decreased the productions of PGE2, NO, TNF-α IL-1ß and IL-6in LPS-stimulated RAW264.7 cells.


Asunto(s)
Antiinflamatorios/química , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Metanol/química , Extractos Vegetales/química , Solventes/química , Animales , Antiinflamatorios/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Fraccionamiento Químico , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dinoprostona/metabolismo , Relación Dosis-Respuesta a Droga , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fitoterapia , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Células RAW 264.7
12.
Probiotics Antimicrob Proteins ; 15(5): 1371-1381, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36083465

RESUMEN

Functional constipation is one of the most common gastrointestinal disorders. Oxidative stress can aggravate organ dysfunction. Enteric neurotransmitters have significant effects on the regulation of the enteric nervous system and intestinal muscle contraction. Oxidative stress and reduced gastrointestinal motility are considered to be one of the main causes of constipation. This study aimed to investigate whether LimosiLactobacillus pentosus CQZC02 alleviated loperamide hydrochloride (Lop)-induced constipation in mice under high-fat diet (HFD) conditions and to elucidate the underlying mechanism, focusing on enteric neurotransmitters. Four-week-old female BALB/c mice were randomly divided into five groups: normal group (Nor), constipation model group (H-Lop), L. pentosus CQZC02 low-dose group (H-Lop + ZC02L), L. pentosus CQZC02 high-dose group (H-Lop + ZC02H), and LimosiLactobacillus bulgaricus control group (H-Lop + LB). The fecal weight, water content, and total gastrointestinal transit time were measured to determine whether the mice were constipated. Small bowel and colon tissue damage was assessed by hematoxylin and eosin staining, while the degree of damage was determined by double-blind scoring. The levels of serum oxidative stress markers malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase and neurotransmitters motilin, gastrin, substance P, endothelin, somatostatin, and vasoactive intestinal peptide were measured. The gene expression levels of endothelial nitric oxide synthase, inducible nitric oxide synthase, neuronal nitric oxide synthase, nuclear factor kappa-B, and cyclooxygenase-2 in small intestine tissue were calculated. The constipation symptoms of mice in H-Lop group were manifested by a variety of physiological indicators. In addition, compared with the H-Lop group, H-Lop + ZC02H could effectively relieve the symptoms of constipation in mice. In symptom characterization, the mice in the H-Lop + ZC02H group lost weight and increased feces and water content. In functional experiments, gastrointestinal motility was enhanced; the inflammation score of intestinal tissue was decreased, and gene expression levels were modulated; serum oxidative factor levels were modulated, and oxidative stress levels were decreased.


Asunto(s)
Dieta Alta en Grasa , Planta de la Mostaza , Ratones , Femenino , Animales , Dieta Alta en Grasa/efectos adversos , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Intestino Delgado/metabolismo , Neurotransmisores
13.
Front Microbiol ; 13: 953905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225358

RESUMEN

The occurrence of intestinal diseases such as colon cancer is closely related to the intestinal flora. Lactobacillus fermentum is a gut probiotic that plays an important role in chronic intestinal inflammation and colon cancer. In the current study, we investigated the effect of Lactobacillus fermentum ZS40 on NF-κB signaling pathway of azomethane-dextran sulfate sodium (AOM-DSS) -induced colon cancer in mice. Animals were divided into control group (NC), AOM-DSS-induced model group (CRC), AOM-DSS plus high-dose Lactobacillus fermentum ZS40 (ZS40-H), AOM-DSS plus low-dose Lactobacillus fermentum ZS40 (ZS40-L), AOM-DSS plus Lactobacillus bulgaricus (BLA), and AOM-DSS plus sulfasalazine (SD)-treated group. Observation of animal physiological activity (body weight and defecation), biochemical measurements, histopathological examination of colon tissue, qPCR to evaluate the expression of inflammation-related genes, immunohistochemical analysis of CD34 and CD117, and Western blot analysis of NF-κB signaling pathway were performed. Compared with the CRC group, the ZS40-H, ZS40-L, BLA, and SD groups had decreased levels of colon cancer marker proteins CD34 and CD117, and the number of abnormal colonic lesions observed by colon histology decreased, while the ZS40-H group showed excellent results. In addition, all probiotic interventions showed weight loss effects. The expression of inflammatory stimulators TNF-α and IL-1ß in the probiotic treatment group decreased; the expression of key proteins IκBα and p65 in the NF-κB signaling pathway also decreased, resulting in a decrease in the expression of the target protein Cox-2. Therefore, administration of Lactobacillus fermentum ZS40 as a probiotic can alleviate intestinal inflammation and prevent colon cancer in mice.

14.
Front Nutr ; 9: 938869, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091233

RESUMEN

This study aimed to examine the ameliorating effect of Lactobacillus plantarum (LP) KFY02 on low-fiber diet-induced constipation in mice. LP-KFY02 was isolated from the natural fermented yogurt in Korla of Xinjiang. The mice with low-fiber diet-induced constipation in experimental groups were administered 1 × 109 CFU/kg LP-KFY02 (KFY02H) and 1 × 108 CFU/kg LP-KFY02 (KFY02L). After LP-KFY02 treatment with constipation mice, the mice fecal water content, intestinal transit ability and defecation time of constipated mice were improved. The mice fecal flora diversity, abundance and structure of the intestinal flora were regulated to the balanced state. The mice serum levels of gut motility related neuroendocrine factors have been increased, the intestinal mucosal barrier function and gut motility related gene expression were regulated in mice colon tissues. At the same time, the mice colon tissue damage were improved. These parameters in the KFY02H group were close to the normal group. These results suggested that LP-KFY02 could be considered as a potential probiotic to help alleviate low-fiber diet-induced constipation. They also provided a theoretical basis for the study of probiotics to relieve constipation by regulating intestinal flora.

15.
J Food Biochem ; 46(8): e14200, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35484880

RESUMEN

Inflammation is a characteristic of obesity. The rich compounds in lemon peel have anti-inflammatory effects. This study examined whether fermented lemon peel can have an anti-obesity effect on obese mice induced by a high-fat diet (HFD) by regulating inflammation. The lemon peel fermentation supernatant (LPFS) could inhibit the weight gain of mice and improve the lesions of the liver and epididymal adipose tissue. In addition, LPFS regulates blood lipids, liver function, and inflammation-related indicators in the serum of obese mice. LPFS plays a positive role in regulating the inflammation and obesity-related genes in liver tissue and adipose tissue of obese mice. High-performance liquid chromatography showed an increase in the contents of compounds with antioxidant or/and anti-inflammatory effects and compounds with anti-obesity effects. These results suggest that the LPFS could help reduce obesity in obese mice induced by an HFD by adjusting the balance of the inflammatory response. PRACTICAL APPLICATIONS: Obesity often increases the risk of chronic diseases, and mild inflammation is a feature of obesity. Therefore, timely suppression of inflammation in the body can help control the occurrence of obesity. This study clarified the anti-obesity effect of fermented lemon peel on a high-fat diet (HFD)-induced obese mice by regulating the body's inflammatory response and confirmed that fermentation improves the anti-inflammatory activity of lemon peel. This study provides important references for future investigation, prophylaxis, and treatment of inflammation and obesity-related diseases, as well as the advances in functional foods and fermented foods with anti-inflammatory and anti-obesity activities.


Asunto(s)
Dieta Alta en Grasa , Obesidad , Animales , Dieta Alta en Grasa/efectos adversos , Inflamación/tratamiento farmacológico , Hígado , Ratones , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/etiología
16.
Front Nutr ; 9: 813899, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308280

RESUMEN

In this study, a carrageenan-induced thrombus model was established in mice to observe the ability of Lactobacillus plantarum KFY05 (LP-KFY05) to inhibit thrombosis through an NF-κB-associated pathway. Biochemical analysis, microscopical observations, quantitative polymerase chain reactions (qPCR) and western blot analysis were used to examine relevant serum and tissue indexes, and the composition of intestinal microorganisms was determined by examining the abundance of microorganisms in feces. The results showed that LP-KFY05 could markedly reduce the degree of black tail in thrombotic mice; increase the activated partial thromboplastin time (APTT); and decrease the thrombin time (TT), fibrinogen (FIB) level, and prothrombin time (PT). LP-KFY05 could also reduce tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß) levels in sera and renal tissues of thrombotic mice. Hematoxylin and eosin staining showed that LP-KFY05 could alleviate renal tissue lesions and tail vein thrombosis. qPCR results showed that LP-KFY05 could down-regulate nuclear factor kappa-B (NF-κB) p65, IL-6, TNF-α, and interferon γ (IFN-γ) mRNA expression in renal tissues, as well as NF-κB p65, intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin mRNA expression in tail vein vascular tissues of thrombotic mice. Western blot analysis showed that LP-KFY05 also down-regulated NF-κB protein expression in renal and tail vein vascular tissues of thrombotic mice. Lastly, LP-KFY05 increased the abundances of Bacteroidetes, Lactobacillus, and Bifidobacterium, as well as decreased the abundance of Firmicutes. These results show that LP-KFY05 can reduce inflammation and inhibit thrombosis in thrombotic mice, and the effects of high concentrations of LP-KFY05 were most pronounced, which were similar to the effects of dipyridamole.

17.
Front Nutr ; 9: 840566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35299759

RESUMEN

In this article, the preventive and protective effect of a new Lactobacillus fermentum, (Lactobacillus fermentum TKSN02: LF-N2), which was isolated and identified from Xinjiang naturally fermented yogurt, on hydrochloric acid (HCl)/ethanol induced gastric injury in mice was studied. A total of 40 mice were divided into the following five groups: normal, model, LF-N2, LB (Lactobacillus bulgaricus), and Ranitidine groups. Except for the normal and model groups, mice in the other groups were treated with LF-N2, LB (Lactobacillus bulgaricus), and Ranitidine separately, and the injury of the gastric tissue was observed by taking photos and pathological sections. The levels of oxidation indicators, gastrointestinal hormone and the inflammatory cytokines in serum and gastric tissue in each group were measured. Further more, the gene expression levels of oxidative stress and inflammation related genes in the colon tissue were determined by the Real-Time PCR method. Pathological observation confirmed that LF-N2 could inhibit the gastric injury caused by HCl/ethanol. Observation of the appearance of the gastric indicated that LF-N2 could effectively reduce the area of gastric injury. Biochemical results showed that the serum gastrin (GAS) and gastric motilin (MTL) levels in the LF-N2 group were significantly lower and the serum somatostatin (SS) level was higher than in the model group and there was no significant difference between all treatment groups. The activities of total superoxide dismutase (T-SOD) and glutathione (GSH) were increased while the malondialdehyde (MDA) content was decreased in LF-N2 treatment group mice, which suggested that LF-N2 has a good antioxidant effect. Further RT-PCR experiments also showed that LF-N2 could promote the related mRNA expression of antioxidant enzymes (Cu/Zn-SOD, Mn-SOD, and CAT) and anti-inflammatory cytokines (IL-4, and IL-10), while it inhibited the gene expression of pro-inflammatory cytokine (IL-6) and apoptosis factor (Caspase-3). As observed, LF-N2 exerted a good preventive effect on HCl/ethanol induced gastric injury in mice, and the effect was close to that of LB, which indicated that LF-N2 has potential use as a probiotic due to its gastric injury treatment effects.

18.
J Inflamm Res ; 15: 4499-4513, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966003

RESUMEN

Objective: The liver protection of blood coral polysaccharide (BCP) was investigated. Materials and Methods: We evaluated the effect of BCP on liver pathology, liver function, oxidation and inflammation-related indicators of D-Gal/LPS-induced acute liver failure (ALF) mice in vivo. Results: Liver index and liver pathology observation in mice showed that BCP could inhibit liver tissue swelling and hemorrhage, hepatocyte damage, and inflammatory infiltration in ALF. Serum liver function results showed that BCP effectively inhibits the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), total bilirubin (TBil), alkaline phosphatase (AKP), myeloperoxidase (MPO). High dose-blood coral polysaccharide (H-BCP) was better than silymarin. Serum antioxidant and immune results showed that BCP increased the levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px), and inhibited the levels of malondialdehyde (MDA) and nitric oxide (NO). Also, BCP increased immunoglobulins G (IgG) and A (IgA) levels, thereby enhancing humoral immunity. Liver anti-inflammatory ELISA results showed that BCP reduced the levels of interleukin (IL)-6, IL-1ß, IL-17, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, and enhanced the level of anti-inflammatory factor IL-10. H-BCP was the most effective treatment. Real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) of liver tissues confirmed that BCP increases the relative expression levels of antioxidant and anti-inflammatory-related cuprozinc superoxide dismutase (Cu/Zn-SOD, SOD1), manganese superoxide dismutase (Mn-SOD, SOD2), CAT, GSH, GSH-Px, and IL-10. In contrast, it inhibits inflammation-related genes IL-6, IL-1ß, IL-17, TNF-α, IFN-γ, inducible nitric oxide synthase (iNOS, NOS2), and cyclooxygenase (COX)-2. In addition, BCP also inhibits the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and enhance B-cell inhibitor-α (IκB-α) gene relative expression in the liver, which may be related to NF-κB pathway inhibition. Conclusion: BCP prevents D-Gal/LPS-induced ALF in mice, and its effect is concentration dependent.

19.
Oxid Med Cell Longev ; 2021: 7337988, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912498

RESUMEN

Lactobacillus plantarum ZS62 is a newly isolated strain from naturally fermented yogurt that might offer some beneficial effects in the setting of alcohol-induced subacute liver injury. The liver-protective effect of L. plantarum ZS62 was investigated by gavage feeding of mice with this Lactobacillus strain (1 × 109 CFU/kg BW) before alcohol administration daily for 7 days. We then compared hepatic morphology, liver function indexes, liver lipid levels, inflammation, oxidative stress levels, and mRNA expression of oxidative metabolism- and inflammation-related genes in mice that had been pretreated with Lactobacillus plantarum versus control mice that had not been pretreated. Our results showed that L. plantarum ZS62 attenuated alcohol-induced weight loss; prevented morphological changes in hepatocytes; reduced markers of liver damage including aspartate aminotransaminase (AST), alanine aminotransaminase (ALT), hyaluronidase (HAase), precollagen III (PC III), and inflammatory cytokines; and enhanced the antioxidative status. L. plantarum ZS62 also significantly downregulated inflammation-related genes and upregulated lipid- and oxidative-metabolism genes. Thus, Lactobacillus plantarum pretreatment appears to confer hepatic protection by reducing inflammation and enhancing antioxidative capacity. The protective effect of L. plantarum ZS62 was even better than that of a commonly used commercial lactic acid bacteria (Lactobacillus delbrueckii subsp. Bulgaricus). The L. plantarum ZS62 might be a potentially beneficial prophylactic treatment for people who frequently drink alcoholic beverages.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Etanol/toxicidad , Inflamación/tratamiento farmacológico , Lactobacillus plantarum/química , Hepatopatías Alcohólicas/prevención & control , Probióticos/farmacología , Animales , Depresores del Sistema Nervioso Central/toxicidad , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Hepatopatías Alcohólicas/etiología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Estrés Oxidativo
20.
J Food Sci ; 86(1): 215-227, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33300164

RESUMEN

Liupao tea (LPT) is traditional dark Chinese tea. The effect of LPT extract on high-fat-diet-induced obese mice was investigated systematically. The results showed that LPT extract could reduce body weight and significantly alleviate liver damage and fat accumulation. LPT could also decrease the levels of alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (AKP), total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) and increase the level of high-density lipoprotein cholesterol (HDL-C) in the liver. It also decreased the serum levels of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin (IL)-1ß, and IL-6 and increased the serum levels of anti-inflammatory cytokines, including IL-10 and IL-4. Moreover, LPT improved the levels of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) and reduced the level of malondialdehyde (MDA) in the liver. Moreover, LPT could upregulate the mRNA and protein expressions of peroxisome proliferator-activated receptor alpha (PPAR-α), lipoprotein lipase (LPL), carnitine palmitoyltransferase 1(CPT1), and cholesterol 7 alpha-hydroxylase (CYP7A1) and downregulate those of PPAR-γ and CCAAT/enhancer-binding protein alpha (C/EBP-α) in the liver. It also increased the mRNA expression of copper/zinc superoxide dismutase (SOD1), manganese superoxide dismutase (SOD2), CAT, gamma-glutamylcysteine synthetase 1 (GSH1), and GSH-Px. The components of LPT extract include catechin, rutin, taxifolin, and astragalin, which possibly have a wide range of biological activities. In conclusion, our work verified that LPT extract possessed an anti-obesity effect and alleviated obesity-related symptoms, including lipid metabolism disorder, chronic low-grade inflammation, and liver damage, by modulating lipid metabolism and oxidative stress.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Té/química , Alanina Transaminasa/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Catequina/farmacología , Fermentación , Manipulación de Alimentos , Glutatión Peroxidasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Obesos , Obesidad/metabolismo , PPAR alfa/metabolismo , Extractos Vegetales/química , Superóxido Dismutasa/metabolismo , Té/clasificación , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA