Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834874

RESUMEN

Natural enemies such as parasitoids and parasites depend on sensitive olfactory to search for their specific hosts. Herbivore-induced plant volatiles (HIPVs) are vital components in providing host information for many natural enemies of herbivores. However, the olfactory-related proteins involved in the recognition of HIPVs are rarely reported. In this study, we established an exhaustive tissue and developmental expression profile of odorant-binding proteins (OBPs) from Dastarcus helophoroides, an essential natural enemy in the forestry ecosystem. Twenty DhelOBPs displayed various expression patterns in different organs and adult physiological states, suggesting a potential involvement in olfactory perception. In silico AlphaFold2-based modeling and molecular docking showed similar binding energies between six DhelOBPs (DhelOBP4, 5, 6, 14, 18, and 20) and HIPVs from Pinus massoniana. While in vitro fluorescence competitive binding assays showed only recombinant DhelOBP4, the most highly expressed in the antennae of emerging adults could bind to HIPVs with high binding affinities. RNAi-mediated behavioral assays indicated that DhelOBP4 was an essential functional protein for D. helophoroides adults recognizing two behaviorally attractive substances: p-cymene and γ-terpinene. Further binding conformation analyses revealed that Phe 54, Val 56, and Phe 71 might be the key binding sites for DhelOBP4 interacting with HIPVs. In conclusion, our results provide an essential molecular basis for the olfactory perception of D. helophoroides and reliable evidence for recognizing the HIPVs of natural enemies from insect OBPs' perspective.


Asunto(s)
Escarabajos , Receptores Odorantes , Animales , Herbivoria , Ecosistema , Simulación del Acoplamiento Molecular , Escarabajos/metabolismo , Receptores Odorantes/metabolismo , Proteínas de Insectos/metabolismo , Antenas de Artrópodos/metabolismo
2.
J Chem Ecol ; 45(10): 849-857, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31512099

RESUMEN

Odorant binding proteins (OBPs) play a key role in chemoreception in insects. In an earlier study, we identified CmedOBP14 from the rice leaf folder, Cnaphalocrocis medinalis, with potential physiological functions in olfaction. Here, we performed a competitive binding assay under different pH conditions as well as knockdown via RNA interference to determine the specific role of CmedOBP14 in C. medinalis. CmedOBP14 displayed broad binding affinities to many host-related compounds, with higher affinities at pH 7.4 compared with pH 5.0. After treatment with CmedOBP14-dsRNA, the transcript level of OBP14 was significantly decreased at 72 h compared with controls, and the electroantennogram response evoked by nerolidol, L-limonene and beta-ionone was reduced. Furthermore, behavioral assays revealed consistent patterns among these compounds, especially for nerolidol, with adults could no longer able to differentiate 0.1% nerolidol from controls. RNAi experiments suggest that at least in part, CmedOBP14 mediates the ability to smell nerolidol and beta-ionone.


Asunto(s)
Proteínas de Insectos/metabolismo , Mariposas Nocturnas/metabolismo , Receptores Odorantes/metabolismo , Animales , Antenas de Artrópodos/metabolismo , Conducta Animal/efectos de los fármacos , Unión Competitiva , Fenómenos Electrofisiológicos/efectos de los fármacos , Concentración de Iones de Hidrógeno , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Norisoprenoides/farmacología , Interferencia de ARN , ARN Bicatenario/metabolismo , Receptores Odorantes/antagonistas & inhibidores , Receptores Odorantes/genética , Sesquiterpenos/farmacología
3.
J Chem Ecol ; 43(11-12): 1033-1045, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29063475

RESUMEN

In light of reverse chemical ecology, the fluorescence competitive binding assays of functional odorant binding proteins (OBPs) is a recent advanced approach for screening behaviorally active compounds of insects. Previous research on Dastareus helophoroides identified a minus-C OBP, DhelOBP21, which preferably binds to several ligands. In this study, only (+)-ß-pinene proved attractive to unmated adult beetles. To obtain a more in-depth explanation of the lack of behavioral activity of other ligands we selected compounds with high (camphor) and low (ß-caryophyllene) binding affinities. The structural transformation of OBPs was investigated using well-established approaches for studying binding processes, such as fluorescent quenching assays, circular dichroism, and molecular dynamics. The dynamic binding process revealed that the flexibility of DhelOBP21 seems conducive to binding specific ligands, as opposed to broad substrate binding. The compound (+)-ß-pinene and DhelOBP21 formed a stable complex through a secondary structural transformation of DhelOBP21, in which its amino-terminus transformed from random coil to an α-helix to cover the binding pocket. On the other hand, camphor could not efficiently induce a stable structural transformation, and its high binding affinities were due to strong hydrogen-bonding, compromising the structure of the protein. The other compound, ß-caryophyllene, only collided with DhelOBP21 and could not be positioned in the binding pocket. Studying structural transformation of these proteins through examining the dynamic binding process rather than using approaches that just measure binding affinities such as fluorescence competitive binding assays can provide a more efficient and reliable approach for screening behaviorally active compounds.


Asunto(s)
Escarabajos/metabolismo , Proteínas de Insectos/metabolismo , Receptores Odorantes/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Monoterpenos Bicíclicos , Sitios de Unión , Compuestos Bicíclicos con Puentes/química , Compuestos Bicíclicos con Puentes/metabolismo , Compuestos Bicíclicos con Puentes/farmacología , Dicroismo Circular , Proteínas de Insectos/química , Proteínas de Insectos/genética , Simulación de Dinámica Molecular , Monoterpenos/química , Monoterpenos/metabolismo , Monoterpenos/farmacología , Sesquiterpenos Policíclicos , Interferencia de ARN , ARN Bicatenario/metabolismo , Receptores Odorantes/química , Receptores Odorantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacología , Espectrometría de Fluorescencia
4.
Pest Manag Sci ; 80(8): 4055-4068, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38567786

RESUMEN

BACKGROUND: The important wood-boring pest Batocera horsfieldi has evolved a sensitive olfactory system to locate host plants. Odorant-binding proteins (OBPs) are thought to play key roles in olfactory recognition. Therefore, exploring the physiological function of OBPs could facilitate a better understanding of insect chemical communications. RESULTS: In this research, 36 BhorOBPs genes were identified via transcriptome sequencing of adults' antennae from B. horsfieldi, and most BhorOBPs were predominantly expressed in chemosensory body parts. Through fluorescence competitive binding and fluorescence quenching assays, the antenna-specific BhorOBP28 was investigated and displayed strong binding affinities forming stable complexes with five volatiles, including (+)-α-Pinene, (+)-Limonene, ß-Pinene, (-)-Limonene, and (+)-Longifolene, which could also elicit conformation changes when they were interacting with BhorOBP28. Batocera horsfieldi females exhibited a preference for (-)-Limonene, and a repellent response to (+)-Longifolene. Feeding dsOBP19 produced by a bacteria-expressed system with a newly constructed vector could lead to the knockdown of BhorOBP28, and could further impair B. horsfieldi attraction to (-)-Limonene and repellent activity of (+)-Longifolene. The analysis of site-directed mutagenesis revealed that Leu7, Leu72, and Phe121 play a vital role in selectively binding properties of BhorOBP28. CONCLUSION: By modeling the molecular mechanism of olfactory recognition, these results demonstrate that BhorOBP28 is involved in the chemoreception of B. horsfieldi. The bacterial-expressed dsRNA delivery system gains new insights into potential population management strategies. Through the olfactory process concluded that discovering novel behavioral regulation and environmentally friendly control options for B. horsfieldi in the future. © 2024 Society of Chemical Industry.


Asunto(s)
Quirópteros , Proteínas de Insectos , Receptores Odorantes , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/química , Animales , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Femenino , Antenas de Artrópodos/metabolismo , Filogenia , Masculino
5.
J Agric Food Chem ; 70(51): 16323-16334, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36511755

RESUMEN

Odorant binding proteins (OBPs) play an important role in insect peripheral olfactory systems and exploring the physiological function of OBPs could facilitate the understanding of insects' chemical communication. Here, the functional analysis of an antenna-based NlugOBP8 from brown planthopper (BPH) Nilaparvata lugens (Stål) was performed both in vitro and in vivo. Recombinant NlugOBP8 exhibited strong binding affinity to 13 out of 26 rice plant volatiles and could form a stable complex with 9 of them according to the fluorescence binding and fluorescence quenching experiments. Circular dichroism spectra demonstrated that six volatiles could give rise to significant conformational change of recombinant NlugOBP8. H-tube olfactometer bioassay confirmed that BPHs were significantly attracted by nerolidol and significantly repelled by linalool, caryophyllene oxide, and terpinolene, respectively. Antennae of dsNlugOBP8-injected BPHs exhibited significantly lower electrophysiological response to linalool and caryophyllene oxide. Moreover, the repellent responses of BPHs to these two volatiles were also impaired upon silencing NlugOBP8. These data suggest that NlugOBP8 is involved in recognizing linalool and caryophyllene oxide and provide additional target for the sustainable control of BPHs.


Asunto(s)
Hemípteros , Oryza , Animales , Terpenos/farmacología , Hemípteros/fisiología , Percepción
6.
Insect Biochem Mol Biol ; 140: 103677, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34763091

RESUMEN

Insect odorant-binding proteins (OBPs) are a class of small soluble proteins that can be found in various tissues wherein binding and transport of small molecules are required. Thus, OBPs are not only involved in typical olfactory function by specific activities with odorants but also participate in other physiological processes in non-chemosensory tissues. To better understand the complex biological functions of OBPs, it is necessary to study the transcriptional regulation of their expression patterns. In this paper, an apparent gradient expression pattern of Obp19, that was highly and specifically expressed in antennae and played an essential role in the detection of camphene, was defined in the antennae of the Japanese pine sawyer. Further, the transcription factor BarH1, that also presented gradient expression pattern in antennae, was found to regulate expression of Obp19 directly through binding to its upstream DNA sequence. The condition of BarH1 gene silence, the gene expression levels of Obp19 significantly decreased. At the same time, additional olfactory genes also were regulated and thus influence camphene reception. These findings provide us an opportunity to incorporate Obps in the gene regulatory networks of insects, which contribute to a better understanding of the multiplicity and diversity of OBPs and the olfactory mediated behaviors.


Asunto(s)
Escarabajos , Percepción Olfatoria , Receptores Odorantes , Animales , Antenas de Artrópodos/metabolismo , Escarabajos/genética , Escarabajos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos/genética , Insectos/metabolismo , Percepción Olfatoria/genética , Receptores Odorantes/metabolismo , Olfato/genética
7.
Sci Rep ; 6: 33981, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27659921

RESUMEN

Odorant binding proteins (OBPs) transport hydrophobic odorants from the environment to odorant receptors and play an important role in specific recognition of volatiles. Here, we expressed and purified a minus-C OBP, BhorOBPm2, from Batocera horsfieldi, a major pest of Popolus, to determine its binding characteristics with 58 candidate volatiles using a fluorescence competition-binding assay. We showed that BhorOBPm2 exhibited high binding affinity with chain volatiles and that ligands were selected based on chain length. In order to elucidate the binding mechanism, homology modeling and molecular-docking experiments were performed to investigate interactions between BhorOBPm2 and volatiles. The predicted structure with only two disulfide bonds showed one continuous channel for ligand binding, similar to classic OBPs AgamOBP1 and CquiOBP1. Unexpectedly, we observed a larger binding pocket for BhorOBPm2 and broader specificity for ligands than classic OBPs due to the expansive flexibility of BhorOBPm2 resulting from a lack of disulfide bonds. These findings suggested that BhorOBPm2 might present an intermediate structure in the evolution of OBPs. Furthermore, we designed two mutant proteins to simulate and verify functions of the C-terminal region. The changes in binding affinity observed here indicated a novel action differing from that of the "lid" described in previous studies.

8.
Int J Biol Sci ; 11(11): 1281-95, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26435694

RESUMEN

Odorant binding proteins (OBPs) transport hydrophobic odor molecules across the sensillar lymph to trigger a neuronal response. Herein, the Minus-C OBP (DhelOBP21) was characterized from Dastarcus helophoroides, the most important natural parasitic enemy insect that targets Monochamus alternatus. Homology modeling and molecular docking were conducted on the interaction between DhelOBP21 and 17 volatile molecules (including volatiles from pine bark, the larva of M. alternatus, and the faeces of the larva). The predicted three-dimensional structure showed only two disulfide bridges and a hydrophobic binding cavity with a short C-terminus. Ligand-binding experiments using N-phenylnaphthylamine (1-NPN) as a fluorescent probe showed that DhelOBP21 exhibited better binding affinities against those ligands with a molecular volume between 100 and 125 Å(³) compared with ligands with a molecular volume between 160 and 185 Å(³). Molecules that are too big or too small are not conducive for binding. We mutated the amino acid residues of the binding cavity to increase either hydrophobicity or hydrophilia. Ligand-binding experiments and cyber molecular docking assays indicated that hydrophobic interactions are more significant than hydrogen-bonding interactions. Although hydrogen-bond interactions could be predicted for some binding complexes, the hydrophobic interactions had more influence on binding following hydrophobic changes that affected the cavity. The orientation of ligands affects binding by influencing hydrophobic interactions. The binding process is controlled by multiple factors. This study provides a basis to explore the ligand-binding mechanisms of Minus-C OBP.


Asunto(s)
Escarabajos/metabolismo , Receptores Odorantes/metabolismo , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA