Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 18(47): 14996-5003, 2012 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-23032996

RESUMEN

Low-layered, transparent graphene is accessible by a chemical vapor deposition (CVD) technique on a Ni-catalyst layer, which is deposited on a <100> silicon substrate. The number of graphene layers on the substrate is controlled by the grain boundaries in the Ni-catalyst layer and can be studied by micro Raman analysis. Electrical studies showed a sheet resistance (R(sheet)) of approximately 1435 Ω per □, a contact resistance (R(c)) of about 127 Ω, and a specific contact resistance (R(sc)) of approximately 2.8×10(-4) â€…Ω cm(2) for the CVD graphene samples. Transistor output characteristics for the graphene sample demonstrated linear current/voltage behavior. A current versus voltage (I(ds)-V(ds)) plot clearly indicates a p-conducting characteristic of the synthesized graphene. Gas-sensor measurements revealed a high sensor activity of the low-layer graphene material towards H(2) and CO. At 300 °C, a sensor response of approximately 29 towards low H(2) concentrations (1 vol %) was observed, which is by a factor of four higher than recently reported.

2.
Chem Commun (Camb) ; (22): 3205-7, 2009 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-19587914

RESUMEN

A novel approach towards fabricating free-standing and self-supporting highly aligned CNT arrays with integrated top and bottom contacts for the design and implementation of future CNT-based sensor devices is reported.

3.
ACS Omega ; 4(26): 21962-21966, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31891075

RESUMEN

Surface plasmon polaritons on (silver) nanowires are promising components for future photonic technologies. Here, we study near-field patterns on silver nanowires with a scattering-type scanning near-field optical microscope that enables the direct mapping of surface waves. We analyze the spatial pattern of the plasmon signatures for different excitation geometries and polarization and observe a plasmon wave pattern that is canted relative to the nanowire axis, which we show is due to a superposition of two different plasmon modes, as supported by electromagnetic simulations including the influence of the substrate. These findings yield new insights into the excitation and propagation of plasmon polaritons for applications in nanoplasmonic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA