Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 152(2): 024709, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31941300

RESUMEN

A novel method of measuring the core level binding energies of multiple sized nanoparticles on the same substrate is demonstrated using the early stage of Au nanoparticle growth on reduced r-TiO2(110). This method employed in situ scanning tunneling microscopy (STM) and microfocused X-ray photoemission spectroscopy. An STM tip-shadowing method was used to synthesize patterned areas of Au nanoparticles on the substrate with different coverages and sizes. Patterns were identified and imaged using a UV photoelectron emission microscope. The Au 4f core level binding energies of the nanoparticles were investigated as a function of Au nanoparticle coverage and size. A combination of initial and final state effects modifies the binding energies of the Au 4f core levels as the nanoparticle size changes. When single Au atoms and Au3 clusters are present, the Au 4f7/2 binding energy, 84.42 eV, is similar to that observed at a high coverage (1.8 monolayer equivalent), resulting from a cancellation of initial and final state effects. As the coverage is increased, there is a decrease in binding energy, which then increases at a higher coverage to 84.39 eV. These results are consistent with a Volmer-Weber nucleation-growth model of Au nanoparticles at oxygen vacancies, resulting in electron transfer to the nanoparticles.

2.
Sci Adv ; 5(3): eaav3478, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30838332

RESUMEN

Control of emergent magnetic orders in correlated electron materials promises new opportunities for applications in spintronics. For their technological exploitation, it is important to understand the role of surfaces and interfaces to other materials and their impact on the emergent magnetic orders. Here, we demonstrate for iron telluride, the nonsuperconducting parent compound of the iron chalcogenide superconductors, determination and manipulation of the surface magnetic structure by low-temperature spin-polarized scanning tunneling microscopy. Iron telluride exhibits a complex structural and magnetic phase diagram as a function of interstitial iron concentration. Several theories have been put forward to explain the different magnetic orders observed in the phase diagram, which ascribe a dominant role either to interactions mediated by itinerant electrons or to local moment interactions. Through the controlled removal of surface excess iron, we can separate the influence of the excess iron from that of the change in the lattice structure.

3.
Top Catal ; 61(5): 308-317, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31258302

RESUMEN

Au/Pd nanoparticles are important in a number of catalytic processes. Here we investigate the formation of Au-Pd bimetallic nanoparticles on TiO2(110) and their susceptibility to encapsulation using scanning tunneling microscopy, as well as Auger spectroscopy and low energy electron diffraction. Sequentially depositing 5 MLE Pd and 1 MLE Au at 298 K followed by annealing to 573 K results in a bimetallic core and Pd shell, with TiOx encapsulation on annealing to ~ 800 K. Further deposition of Au on the pinwheel type TiOx layer results in a template-assisted nucleation of Au nanoclusters, while on the zigzag type TiOx layer no preferential adsorption site of Au was observed. Increasing the Au:Pd ratio to 3 MLE Pd and 2 MLE Au results in nanoparticles that are enriched in Au at their surface, which exhibit a strong resistance towards encapsulation. Hence the degree of encapsulation of the nanoparticles during sintering can be controlled by tuning the Au:Pd ratio.

4.
J Phys Chem Lett ; 9(17): 4865-4871, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30081626

RESUMEN

Water-oxide surfaces are ubiquitous in nature and of widespread importance to phenomena like corrosion as well as contemporary industrial challenges such as energy production through water splitting. So far, a reasonably robust understanding of the structure of such interfaces under certain conditions has been obtained. Considerably less is known about how overlayer water modifies the inherent reactivity of oxide surfaces. Here we address this issue experimentally for rutile TiO2(110) using scanning tunneling microscopy and photoemission, with complementary density functional theory calculations. Through detailed studies of adsorbed water nanoclusters and continuous water overlayers, we determine that excess electrons in TiO2 are attracted to the top surface layer by water molecules. Measurements on methanol show similar behavior. Our results suggest that adsorbate-induced surface segregation of polarons could be a general phenomenon for technologically relevant oxide materials, with consequences for surface chemistry and the associated catalytic activity.

5.
J Phys Chem C Nanomater Interfaces ; 121(44): 24721-24725, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29152035

RESUMEN

Au nanoparticles supported on reducible metal oxide surfaces are known to be active catalysts for a number of reactions including CO oxidation and hydrogen production. The exact choice of a metal oxide support has been shown to have a marked impact on activity, suggesting that interactions between Au and the support play a key role in catalysis. For TiO2, a model substrate for Au catalysis, it had been thought that bridging oxygen vacancies are involved in binding Au atoms to the (110) surface based on indirect evidence. However, a recent scanning transmission electron microscopy study of single Pt atoms on TiO2(110) suggests that subsurface vacancies are more important. To clarify the role of bridging or subsurface vacancies we employ scanning tunneling microscopy to determine the bonding site of single Au atoms on TiO2(110). Using in situ deposition as well as a manipulation method, we provide definitive evidence that the bonding site is atop surface oxygen vacancies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA