RESUMEN
Colletotrichum fructicola is a devastating fungal pathogen of diverse plants. Sexually compatible plus and minus strains occur in the same ascus. However, the differentiation mechanism of plus and minus strains remains poorly understood. Here, we characterized a novel Cys2-His2-containing transcription factor CfCpmd1. The plus CfCpmd1 deletion mutant (Δ+CfCpmd1) resulted in slow hyphal growth and a fluffy cotton-like colony, and the minus deletion mutant (Δ-CfCpmd1) exhibited characters similar to the wild type (WT). Δ+CfCpmd1 led to defective perithecial formation, whereas Δ-CfCpmd1 produced more and smaller perithecia. The normal mating line was developed by pairing cultures of Δ-CfCpmd1 and plus WT, whereas a weak line was observed between Δ+CfCpmd1 and minus WT. Conidial production was completely abolished in both plus and minus mutants. When inoculated on non-wounded apple leaves with mycelial plugs, Δ-CfCpmd1 was nonpathogenic because of failure to develop conidia and appressoria, while Δ+CfCpmd1 could infect apple leaves by appressoria differentiated directly from hyphal tips, even though no conidia formed. Collectively, our results demonstrate that CfCpmd1 of C. fructicola is an important gene related to plus and minus strain differentiation, which also affects hyphal growth, sporulation, appressorium formation, and pathogenicity.
Asunto(s)
Malus , Phyllachorales , Malus/microbiología , Virulencia , Enfermedades de las Plantas/microbiología , Desarrollo SexualRESUMEN
OBJECTIVE: This study was aimed to explore the possible mechanism of environmental metal cadmium (Cd) inducing apoptosis of pig lymph nodes. METHOD: 10 healthy 6-week-old weaned piglets were randomly divided into two groups (n = 5 pigs/group). The control group was fed with a basic diet, and the test group was fed with a basic diet of 20 mg/kg CdCl2. RESULTS: The Cd deposition in mesenteric lymph nodes (MLN), inguinal lymph nodes (ILN) and submaxillary lymph nodes (SLN) after Cd exposure was 2.37 folds, 1.4 folds and 1.8 folds of the control group, respectively. And the rate of MLN and ILN apoptotic cells in the Cd group was 4.11 folds and 9.18 folds of the control group, respectively. The mRNA levels of SOD1, SOD2, CAT, GPX1 and GSH in the Cd group were reduced. Similarly, the two-phase detoxification enzymes had a significant downward trend. Cd exposure decreased the activities of GSH, GSH-Px, SOD, CAT, and increased H2O2 and MDA levels. The mRNA and protein levels of Drp1 and Mff in the Cd group were higher than the corresponding control group, and the mRNA and protein levels of Mfn1 and Mfn2 were lower than those in the control group. In addition, the mRNA and protein levels of pro-apoptotic genes in the Cd group were lower than those in the control group. Cd can significantly reduce the expression of PI3K, AKT and HIF-1α in the three lymph nodes. In summary, Cd induces oxidative stress and regulates the PI3K/AKT/HIF-1α signal transduction pathway to cause mitochondrial dynamics disorder, which leads to the apoptosis of pig lymph nodes, suggesting that Cd-induced mitochondrial pathway apoptosis is related to Cd pig lymph nodes play an important role in the toxicity mechanism.