Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 610(7931): 356-365, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198802

RESUMEN

Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.


Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular , Células Estrelladas Hepáticas , Neoplasias Hepáticas , Animales , Carcinogénesis/patología , Carcinoma Hepatocelular/patología , Proliferación Celular , Colágeno Tipo I/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Progresión de la Enfermedad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Factor de Crecimiento de Hepatocito/metabolismo , Hepatocitos , Humanos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/patología , Ratones , Miofibroblastos/patología
2.
Proc Natl Acad Sci U S A ; 120(24): e2220867120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37279265

RESUMEN

The mammalian cochlear epithelium undergoes substantial remodeling and maturation before the onset of hearing. However, very little is known about the transcriptional network governing cochlear late-stage maturation and particularly the differentiation of its lateral nonsensory region. Here, we establish ZBTB20 as an essential transcription factor required for cochlear terminal differentiation and maturation and hearing. ZBTB20 is abundantly expressed in the developing and mature cochlear nonsensory epithelial cells, with transient expression in immature hair cells and spiral ganglion neurons. Otocyst-specific deletion of Zbtb20 causes profound deafness with reduced endolymph potential in mice. The subtypes of cochlear epithelial cells are normally generated, but their postnatal development is arrested in the absence of ZBTB20, as manifested by an immature appearance of the organ of Corti, malformation of tectorial membrane (TM), a flattened spiral prominence (SP), and a lack of identifiable Boettcher cells. Furthermore, these defects are related with a failure in the terminal differentiation of the nonsensory epithelium covering the outer border Claudius cells, outer sulcus root cells, and SP epithelial cells. Transcriptome analysis shows that ZBTB20 regulates genes encoding for TM proteins in the greater epithelial ridge, and those preferentially expressed in root cells and SP epithelium. Our results point to ZBTB20 as an essential regulator for postnatal cochlear maturation and particularly for the terminal differentiation of cochlear lateral nonsensory domain.


Asunto(s)
Cóclea , Células Ciliadas Auditivas , Animales , Ratones , Cóclea/metabolismo , Células Ciliadas Auditivas/fisiología , Audición/fisiología , Mamíferos , Ganglio Espiral de la Cóclea , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
BMC Cancer ; 24(1): 217, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360572

RESUMEN

OBJECTIVE: The aim of this study was to compare the therapeutic value and treatment-related complications of radical hysterectomy with those of concurrent chemoradiotherapy (CCRT) for locally resectable (T1a2-T2a1) stage IIIC1r cervical cancer. METHODS: A total of 213 patients with locally resectable stage IIIC1r cervical cancer who had been treated at Jiangxi Maternal and Child Health Care Hospital between January 2013 and December 2021 were included in the study and classified into two groups: surgery (148 patients) and CCRT (65 patients). The disease-free survival (DFS) rate, overall survival (OS) rate, side effects, and economic costs associated with the two groups were compared. RESULTS: 43.9% (65/148) patients in the surgical group had no pelvic lymph node metastasis, and 21of them did not require supplementary treatment after surgery due to a low risk of postoperative pathology. The median follow-up time was 46 months (range: 7-108 months). The five-year DFS and OS rates of the surgery group were slightly higher than those of the CCRT group (80.7% vs. 75.1% and 81.6% vs. 80.6%, respectively; p > 0.05). The incidences of grade III-IV gastrointestinal reactions in the surgery and CCRT groups were 5.5% and 9.2%, respectively (p = 0.332). Grade III-IV myelosuppression was identified in 27.6% of the surgery group and 26.2% of the CCRT group (p = 0.836). The per capita treatment cost was higher for the surgery group than for the CCRT group (RMB 123, 918.6 0 vs. RMB 101, 880.90, p = 0.001). CONCLUSION: The therapeutic effects and treatment-related complications of hysterectomy and CCRT are equivalent in patients with locally resectable stage IIIC1r cervical cancer, but surgery can provide accurate lymph node information and benefit patients with unnecessary radiation.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Niño , Humanos , Neoplasias del Cuello Uterino/patología , Quimioradioterapia/efectos adversos , Ganglios Linfáticos/patología , Supervivencia sin Enfermedad , Escisión del Ganglio Linfático , Estudios Retrospectivos , Estadificación de Neoplasias , Histerectomía
4.
J Magn Reson Imaging ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263789

RESUMEN

BACKGROUND: Insular low-grade gliomas (LGGs) are surgically challenging due to their proximity to critical structures like the corticospinal tract (CST). PURPOSE: This study aims to determine if preoperative CST shape metrics correlate with postoperative motor complications in insular LGG patients. STUDY TYPE: Retrospective. POPULATION: 42 patients (mean age 40.26 ± 10.21 years, 25 male) with insular LGGs. FIELD STRENGTH/SEQUENCE: Imaging was performed using 3.0 Tesla MRI, incorporating T1-weighted magnetization-prepared rapid gradient-echo, T2-weighted space dark-fluid with spin echo (SE), and diffusional kurtosis imaging (DKI) with gradient echo sequences, all integrated with echo planar imaging. ASSESSMENT: Shape metrics of the CST, including span, irregularity, radius, and irregularity of end regions (RER and IER, respectively), were compared between the affected and healthy hemispheres. Total end region radius (TRER) was determined as the sum of RER 1 and RER 2. The relationships between shape metrics and postoperative short-term (4 weeks) and long-term (>8 weeks) motor disturbances assessing by British Medical Research Council grading system, was analyzed using multivariable regression models. STATISTICAL TESTING: Paired t-tests compared CST metrics between hemispheres. Logistic regression identified associations between these metrics and motor disturbances. The models were developed using all available data and there was no independent validation dataset. Significance was set at P < 0.05. RESULTS: Short-term motor disturbance risk was significantly related to TRER (OR = 199.57). Long-term risk significantly correlated with IER 1 (OR = 59.84), confirmed as a significant marker with an AUC of 0.78. Furthermore, the CST on the affected side significantly had the greater irregularity, larger TRER and RER 1, and smaller span compared to the healthy side. DATA CONCLUSION: Preoperative evaluation of TRER and IER 1 metrics in the CST may serve as a tool for assessing the risk of postoperative motor complications in insular LGG patients. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

5.
J Neurooncol ; 166(1): 155-165, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38150062

RESUMEN

OBJECTIVES: This study aims to explore the relationship between the methylation levels of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter and the structural connectivity in insular gliomas across hemispheres. METHODS: We analyzed 32 left and 29 right insular glioma cases and 50 healthy controls, using differential tractography, correlational tractography, and graph theoretical analysis to investigate the correlation between structural connectivity and the methylation level. RESULTS: The differential tractography results revealed that in left insular glioma, the volume of affected inferior fronto-occipital fasciculus (IFOF, p = 0.019) significantly correlated with methylation levels. Correlational tractography results showed that the quantitative anisotropy (QA) value of peritumoral fiber tracts also exhibited a significant correlation with methylation levels (FDR < 0.05). On the other hand, in right insular glioma, anterior internal part of the reticular tract, IFOF, and thalamic radiation showed a significant correlation with methylation levels but at a different correlation direction from the left side (FDR < 0.05). The graph theoretical analysis showed that in the left insular gliomas, only the radius of graph was significantly lower in methylated MGMT group than unmethylated group (p = 0.047). No significant correlations between global properties and methylation levels were observed in insular gliomas on both sides. CONCLUSION: Our findings highlight a significant, hemisphere-specific correlation between MGMT promoter methylation and structural connectivity in insular gliomas. This study provides new insights into the genetic influence on glioma pathology, which could inform targeted therapeutic strategies.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Metilación de ADN , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/tratamiento farmacológico , Enzimas Reparadoras del ADN/genética , O(6)-Metilguanina-ADN Metiltransferasa/genética , Metilasas de Modificación del ADN/genética , Regiones Promotoras Genéticas , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas Supresoras de Tumor/genética
6.
Mol Breed ; 43(1): 5, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37312866

RESUMEN

For mechanized maize production, a low grain water content (GWC) at harvest is necessary. However, as a complex quantitative trait, understand the genetic mechanism of GWC remains a large gap, especially in hybrids. In this study, a hybrid population through two environments including 442 F1 was used for genome-wide association analysis of GWC and the grain dehydration rate (GDR), using the area under the dry down curve (AUDDC) as the index. Then, we identified 19 and 17 associated SNPs for GWC and AUDDC, including 10 co-localized SNPs, along with 64 and 77 pairs of epistatic SNPs for GWC and AUDDC, respectively. These loci could explain 11.39-68.2% of the total phenotypic variation for GWC and 41.07-67.02% for AUDDC at different stages, whose major effect was the additive and epistatic effect. By exploring the candidate genes around the significant sites, a total of 398 and 457 possible protein-coding genes were screened, including autophagy pathway and auxin regulation-related genes, and five inbred lines with the potential to reduce GWC in the combined F1 hybrid were identified. Our research not only provides a certain reference for the genetic mechanism analysis of GWC in hybrids but also provides an added reference for breeding low-GWC materials. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01349-x.

7.
Environ Res ; 226: 115663, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907343

RESUMEN

In response to the low removal capacity and poor tolerance of fungi to diesel-contaminated soil, a novel immobilization system using biochar to enhance composite fungi was proposed. Rice husk biochar (RHB) and sodium alginate (SA) were used as immobilization matrices for composite fungi, and the adsorption system (CFI-RHB) and the encapsulation system (CFI-RHB/SA) were obtained. CFI-RHB/SA exhibited the highest diesel removal efficiency (64.10%) in high diesel-contaminated soil over a 60-day remediation period compared to the free composite fungi (42.70%) and CFI-RHB (49.13%). SEM demonstrated that the composite fungi were confirmed to be well attached to the matrix in both CFI-RHB and CFI-RHB/SA. FTIR analysis revealed the appearance of new vibration peaks in diesel-contaminated soil remediated by immobilized microorganisms, demonstrating changes in the molecular structure of diesel before and after degradation. Furthermore, CFI-RHB/SA maintains a stable removal efficiency (>60%) in higher concentrations of diesel-contaminated soil. High-throughput sequencing results indicated that Fusarium and Penicillium played a key role in the removal of diesel contaminants. Meanwhile, both dominant genera were negatively correlated with diesel concentration. The addition of exogenous fungi stimulated the enrichment of functional fungi. The insights gained from experiment and theory help to provide a new understanding of immobilization techniques of composite fungi and the evolution of fungal community structure.


Asunto(s)
Oryza , Contaminantes del Suelo , Biodegradación Ambiental , Oryza/química , Contaminantes del Suelo/análisis , Hongos , Suelo/química
8.
Opt Lett ; 47(3): 561-564, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35103671

RESUMEN

We demonstrate a Si/SiO/SiO2-based period-chirped guided mode resonance (GMR) filter to discriminate telecom o-band wavelengths by spatially resolved horizontal movement. Continuously period-chirped silicon gratings were fabricated by using a Lloyd's laser interferometer with a convex mirror. Due to the large waveguide effective index, the GMR filter can be realized with a short grating period, thus enabling a slow grating period transition along the sample position and high optical resolution in wavelength discrimination. Depositing a SiO/SiO2 stack on top of silicon gratings enables a narrowband GMR filter with a linewidth of 1-1.5 nm over a wavelength range of 1260-1360 nm. By using the chirped GMR filter as a dispersive device, the optical spectra of a near-infrared broadband light source are reconstructed. An optimized aspheric mirror is proposed to further improve the linearity of chirped gratings. Such a period-chirped GMR filter is promising for compact on-chip spectroscopy and sensing applications.

9.
Biomacromolecules ; 23(7): 2814-2826, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35438970

RESUMEN

With the advancements in tissue engineering and three-dimensional (3D) bioprinting, physiologically relevant three-dimensional structures with suitable mechanical and bioactive properties that mimic the biological tissue can be designed and fabricated. However, the available bioinks are less than demanded. In this research, the readily available biomass sources, keratin and glycol chitosan, were selected to develop a UV-curable hydrogel that is feasible for the 3D bioprinting process. Keratin methacrylate and glycol chitosan methacrylate were synthesized, and a hybrid bioink was created by combining this protein-polysaccharide cross-linked hydrogel. While human hair keratin could provide biological functions, the other composition, glycol chitosan, could further enhance the mechanical strength of the construct. The mechanical properties, degradation profile, swelling behavior, cell viability, and proliferation were investigated with various ratios of keratin methacrylate to glycol chitosan methacrylate. The composition of 2% (w/v) keratin methacrylate and 2% (w/v) chitosan methacrylate showed a significantly higher cell number and swelling percentage than other compositions and was designated as the bioink for 3D printing afterward. The feasibility of stem cell loading in the selected formula was examined with an extrusion-based bioprinter. The cells and spheroids can be successfully printed with the synthesized bioink into a specific shape and cultured. This work provides a potential option for bioinks and delivers insights into personalization research on stem cell-laden biofabricated hydrogels in the future.


Asunto(s)
Bioimpresión , Quitosano , Bioimpresión/métodos , Humanos , Hidrogeles/química , Queratinas , Metacrilatos , Impresión Tridimensional , Células Madre , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
10.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36077054

RESUMEN

A-to-I RNA editing and m6A modification are two of the most prevalent types of RNA modifications controlling gene expression in mammals and play very important roles in tumorigenesis and tumor progression. However, the functional roles and correlations of these two RNA modifications remain to be further investigated in cancer. Herein, we show that ADAR1, an A-to-I RNA-editing enzyme, interacts with METTL3 and increases its protein level to promote the proliferation, migration and invasion of breast cancer cells through a mechanism connecting ADAR1, METTL3 and YTHDF1. We show that both ADAR1 and METTL3 are upregulated in breast cancer samples, and ADAR1 positively correlates with METTL3; ADAR1 edits METTL3 mRNA and changes its binding site to miR532-5p, leading to increased METTL3 protein, which further targets ARHGAP5, recognized by YTHDF1. Additionally, we show that loss of ADAR1 significantly inhibits breast cancer growth in vivo. Collectively, our findings identify the ADAR1-METTL3 axis as a novel, important pathway that connects A-to-I editing and m6A RNA modifications during breast cancer progression.


Asunto(s)
Adenosina Desaminasa/metabolismo , Neoplasias de la Mama , Metiltransferasas/metabolismo , MicroARNs , Proteínas de Unión al ARN/metabolismo , Adenosina Desaminasa/genética , Neoplasias de la Mama/genética , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Humanos , MicroARNs/genética , Edición de ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
11.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2474-2479, 2022 May.
Artículo en Zh | MEDLINE | ID: mdl-35531695

RESUMEN

A new phloroglucinol was isolated from 50% ethanol extract of Dryopteris fragrans by silica gel column chromatography, Sephadex LH-20 gel column chromatography, thin-layer chromatography(TLC), and preparative liquid column chromatography. On the basis of MS, ~1H-NMR, ~(13)C-NMR, and reference materials, compound 1 was identified as 2,5-cyclohexadien-1-one, 2-{[2,6-dihydroxy-4-methoxy-3-methyl-5-(1-isobutyl)phenyl]methyl}-3,5-dihydroxy-4,4-dimethyl-6-(1-oxobutyl)(1), and named disaspidin BB. Compound 1 was evaluated for its antibacterial activity. The experimental results showed that compared with the commonly used topical antibiotics erythromycin or mupirocin, disaspidin BB exhibited significant antibacterial activities against Staphylococcus epidermidis(SEP), S. haemolyticus(SHA), and methicillin-resistant S. aureus(MRSA)(P<0.05). Additionally, disaspidin BB was sensitive to ceftazidime-resistant SEP1-SEP4, SHA5-SHA7, MRSA8, and MRSA9. The MIC values of disaspidin BB against SEP and SHA were 1.67-2.71 µg·mL~(-1) and 10.00-33.33 µg·mL~(-1) respectively. Disaspidin BB has good antibacterial activities and deserves development as a new anti-infective drug for external use.


Asunto(s)
Dryopteris , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/química , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Floroglucinol/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología
12.
Plant Mol Biol ; 105(1-2): 177-192, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33025522

RESUMEN

KEY MESSAGE: Rice is an important crop in the world. However, little is known about rice mRNA deadenylation, which is an important regulation step of gene expression at the post-transcriptional level. The CCR4-NOT1 complex contains two key components, CCR4 and CAF1, which are the main cytoplasmic deadenylases in eukaryotic cells. Expression of OsCAF1B was tightly coupled with low-temperature exposure. In the present study, we investigated the function of OsCAF1B in rice by characterizing the molecular and physiological responses to cold stress in OsCAF1B overexpression lines and dominant-negative mutant lines. Our results demonstrate that OsCAF1B plays an important role in growth and development of rice seedlings at low temperatures. Rice is a tropical and subtropical crop that is sensitive to low temperature, and activates a complex gene regulatory network in response to cold stress. Poly(A) tail shortening, also termed deadenylation, is the rate-limiting step of mRNA degradation in eukaryotic cells. CCR4-associated factor 1 (CAF1) proteins are important enzymes for catalysis of mRNA deadenylation in eukaryotes. In the present study, the role of a rice cold-induced CAF1, OsCAF1B, in adaptation of rice plants to low-temperature stress was investigated. Expression of OsCAF1B was closely linked with low-temperature exposure. The increased survival percentage and reduced electrolyte leakage exhibited by OsCAF1B overexpression transgenic lines subjected to cold stress indicate that OsCAF1B plays a positive role in rice growth under low ambient temperature. The enhancement of cold tolerance by OsCAF1B in transgenic rice seedlings involved OsCAF1B deadenylase gene expression, and was associated with elevated expression of late-response cold-related transcription factor genes. In addition, the expression level of OsCAF1B was higher in a cold-tolerant japonica rice cultivar than in a cold-sensitive indica rice cultivar. The results reveal a hitherto undiscovered function of OsCAF1B deadenylase gene expression, which is required for adaptation to cold stress in rice.


Asunto(s)
Respuesta al Choque por Frío/fisiología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantones/metabolismo , Frío , Respuesta al Choque por Frío/genética , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno , Peroxidación de Lípido , Oryza/genética , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Estabilidad del ARN , Plantones/genética , Temperatura , Transcriptoma
13.
Appl Opt ; 60(35): 10873-10877, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35200849

RESUMEN

This work develops a tunable chirped guided-mode resonant (GMR) filter that has a hybrid splay-twist (HST) liquid crystal as a cladding layer. The GMR filter is a color reflector that strongly reflects light at the resonance wavelength, and its chirped grating structure supports tuning of the resonance peak over a wavelength range of over 50 nm. The HST-LC configuration serves as an achromatic polarization rotator that can rotate the axis of polarization of linearly polarized light by providing effective twist angles in the LC layer under an applied voltage. The HST-LC is used to change the direction of the polarization axis of the light that is reflected by the GMR filter; continuous angles of rotation of ∼90∘ are achieved and the linear polarization is retained under applied voltages. The proposed filter enables an ultrabroadband polarization rotation and still maintains a high degree of linear polarization, which allows more degrees of freedom in spectral and polarization controls.

15.
Sensors (Basel) ; 21(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068746

RESUMEN

In this paper, a titled-beam antenna based on spoof surface plasmon polaritons (SSPPs) transmission lines (TLs) is proposed. The parallel SSPPs-TL is a slow-wave TL, which is able to limit waves in the TL strictly. By periodically introducing a set of tapered stubs along the SSPPs-TL, the backward endfire beams are formed by the surface waves in the slow-wave radiation region. Then, through the placement of a big metal plate below the endfire antenna, the backward endfire beams are tilted, and the tilted angle of the beams are steered by the distance of the metal plate and antenna. Over the band of 5.7 GHz~7.0 GHz, the tilted antenna performs constant shapes of radiation patterns. The gain keeps stable at around 12 dBi and the 1-dB gain bandwidth is 20%. The measured results of the fabricated prototypes confirm the design theory and simulated results.

16.
Plant Cell Physiol ; 61(3): 554-564, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782784

RESUMEN

Poly(A) tail (PAT) shortening, also termed deadenylation, is the rate-limiting step of mRNA degradation in eukaryotic cells. The carbon catabolite repressor 4-associated factor 1s (CAF1s) were shown to be one of the major enzymes for catalyzing mRNA deadenylation in yeast and mammalian cells. However, the functions of CAF1 proteins in plants are poorly understood. Herein, a sugar-upregulated CAF1 gene, OsCAF1B, is investigated in rice. Using gain-of-function and dominant-negative mutation analysis, we show that overexpression of OsCAF1B resulted in an accelerated α-amylase gene (αAmy3) mRNA degradation phenomenon, while ectopic expression of a form of OsCAF1B that had lost its deadenylase activity resulted in a delayed αAmy3 mRNA degradation phenomenon in transgenic rice cells. The change in αAmy3 mRNA degradation in transgenic rice is associated with the altered lengths of the αAmy3 mRNA PAT, indicating that OsCAF1B acts as a negative regulator of αAmy3 mRNA stability in rice. Additionally, we found that overexpression of OsCAF1B retards seed germination and seedling growth. These findings indicate that OsCAF1B participates in sugar-induced αAmy3 mRNA degradation and deadenylation and acts a negative factor for germination and seedling development.


Asunto(s)
Germinación/fisiología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , ARN Mensajero/metabolismo , Plantones/crecimiento & desarrollo , Exorribonucleasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Oryza/enzimología , Oryza/genética , Proteínas de Plantas/genética , Factores de Empalme de ARN/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , Plantones/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Azúcares , Transcriptoma , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
17.
Nanotechnology ; 31(49): 495406, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-32990275

RESUMEN

Constructing sulfur hosts with high electronic conductivity, large void space, strong chemisorption, and rapid redox kinetics is critically important for their practical applications in lithium-sulfur batteries (LSBs). Herein, by coupling ZnS quantum dots (QDs) with carbon nanotubes (CNTs), one multifunctional sulfur host CNT/ZnS-QDs is designed via a facile one-step hydrothermal method. SEM and TEM analyses reveal that small ZnS-QDs (<5 nm) are uniformly anchored on the CNT surface as well as encapsulated into CNT channels. This special architecture ensures sulfur direct contacting with highly conductive CNTs; meanwhile, the catalytic effect of anchored ZnS-QDs improves the chemisorption and confinement to polysulfides. Benefiting from these merits, when used as sulfur hosts, this special architecture manifests a high specific capacity, superior rate capability, and long-term cycling stability. The ZnS-QDs dependent electrochemical performance is also evaluated by adjusting the mass ratio of ZnS-QDs, and the host of CNT/ZnS-QDs 27% owns the optimal cell performance. The specific capacity decreases from 1051 mAh g-1 at 0.2 C to 544 mAh g-1 at 2.0 C, showing rate capability much higher than CNT/S and other CNT/ZnS-QDs/S samples. After 150 cycles, the cyclic capacity at 0.5 C exhibits a slow reduction from 1051 mAh g-1 to 771 mAh g-1, showing a high retention of 73.4% with a coulombic efficiency of over 99%. The electrochemical impedance spectroscopy analyses demonstrate that this special architecture juggles high conductivity and excellent confinement of polysulfides, which can significantly suppress the notorious shuttle effect and accelerate the redox kinetics. The strategy in this study provides a feasible approach to design efficient sulfur hosts for realizing practically usable LSBs.

18.
Chaos ; 30(11): 113107, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33261354

RESUMEN

In this paper, the dynamics of transformed nonlinear waves in the (2+1)-dimensional Ito equation are studied by virtue of the analysis of characteristic line and phase shift. First, the N-soliton solution is obtained via the Hirota bilinear method, from which the breath-wave solution is derived by changing values of wave numbers into complex forms. Then, the transition condition for the breath waves is obtained analytically. We show that the breath waves can be transformed into various nonlinear wave structures including the multi-peak soliton, M-shaped soliton, quasi-anti-dark soliton, three types of quasi-periodic waves, and W-shaped soliton. The correspondence of the phase diagram for such nonlinear waves on the wave number plane is presented. The gradient property of the transformed solution is discussed through the wave number ratio. We study the mechanism of wave formation by analyzing the nonlinear superposition between a solitary wave component and a periodic wave component with different phases. The locality and oscillation of transformed waves can also be explained by the superposition mechanism. Furthermore, the time-varying characteristics of high-dimensional transformed waves are investigated by analyzing the geometric properties (angle and distance) of two characteristic lines of waves, which do not exist in (1+1)-dimensional systems. Based on the high-order breath-wave solutions, the interactions between those transformed nonlinear waves are investigated, such as the completely elastic mode, semi-elastic mode, inelastic mode, and collision-free mode. We reveal that the diversity of transformed waves, time-varying property, and shape-changed collision mainly appear as a result of the difference of phase shifts of the solitary wave and periodic wave components. Such phase shifts come from the time evolution as well as the collisions. Finally, the dynamics of the double shape-changed collisions are presented.

19.
J Lipid Res ; 60(12): 1983-1995, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31604805

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is considered as a liver manifestation of metabolic disorders. Previous studies indicate that the renin-angiotensin system (RAS) plays a complex role in NAFLD. As the only precursor of the RAS, decreased angiotensinogen (AGT) profoundly impacts RAS bioactivity. Here, we investigated the role of hepatocyte-derived AGT in liver steatosis. AGT floxed mice (hepAGT+/+) and hepatocyte-specific AGT-deficient mice (hepAGT-/-) were fed a Western diet and a normal laboratory diet for 12 weeks, respectively. Compared with hepAGT+/+ mice, Western diet-fed hepAGT-/- mice gained less body weight with improved insulin sensitivity. The attenuated severity of liver steatosis in hepAGT-/- mice was evidenced by histologic changes and reduced intrahepatic triglycerides. The abundance of SREBP1 and its downstream molecules, acetyl-CoA carboxylase and FASN, was suppressed in hepAGT-/- mice. Furthermore, serum derived from hepAGT+/+ mice stimulated hepatocyte SREBP1 expression, which could be diminished by protein kinase B (Akt)/mammalian target of rapamycin (mTOR) inhibition in vitro. Administration of losartan did not affect diet-induced body weight gain, liver steatosis severity, and hepatic p-Akt, p-mTOR, and SREBP1 protein abundance in hepAGT+/+ mice. These data suggest that attenuation of Western diet-induced liver steatosis in hepAGT-/- mice is associated with the alternation of the Akt/mTOR/SREBP-1c pathway.


Asunto(s)
Angiotensinógeno/metabolismo , Dieta Occidental/efectos adversos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Angiotensinógeno/deficiencia , Animales , Ácidos Grasos/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
20.
Biochem Cell Biol ; 97(5): 505-512, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30645141

RESUMEN

Aberrant expression of microRNAs is associated with liver fibrogenesis. We previously found that microRNA-134 (miR-134) expression was reduced in fibrosis-based hepatocarcinogenesis induced by diethylinitrosamine. Herein we investigate the role and mechanisms of miR-134 in hepatic fibrosis. Our data show that miR-134 expression is reduced in rat hepatic fibrogenesis induced by carbontetrachloride, bile duct ligation, and dimethylnitrosamine, as well as in activated hepatic stellate cells (HSCs). Moreover, miR-134 inhibited HSC proliferation, and decreased the expression of smooth muscle actin and collagen I in HSCs, whereas the miR-134 inhibitor increased HSC activation. MiR-134 also negatively regulated transforming growth factor-ß-activated kinase 1-binding protein 1 (TAB1) expression in both human and rat HSCs by directly binding to its 3' untranslated region. Importantly, TAB1 expression was significantly elevated during liver fibrogenesis and HSC activation. Knockdown of TAB1 inhibited the proliferation and fibrogenic behavior of HSCs, and significantly reduced the effect of the miR-134 inhibitor on HSC proliferation. Collectively, these data suggest that miR-134 inhibits the activation of HSCs via directly targeting TAB1, and the restoration of miR-134 or targeting TAB1 is of clinical significance in the treatment of liver fibrosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Células Estrelladas Hepáticas/efectos de los fármacos , MicroARNs/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Estrelladas Hepáticas/metabolismo , Humanos , Masculino , MicroARNs/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA