Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 49(1): 107-119.e4, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29958798

RESUMEN

Intestinal macrophages are critical for gastrointestinal (GI) homeostasis, but our understanding of their role in regulating intestinal motility is incomplete. Here, we report that CX3C chemokine receptor 1-expressing muscularis macrophages (MMs) were required to maintain normal GI motility. MMs expressed the transient receptor potential vanilloid 4 (TRPV4) channel, which senses thermal, mechanical, and chemical cues. Selective pharmacologic inhibition of TRPV4 or conditional deletion of TRPV4 from macrophages decreased intestinal motility and was sufficient to reverse the GI hypermotility that is associated with chemotherapy treatment. Mechanistically, stimulation of MMs via TRPV4 promoted the release of prostaglandin E2 and elicited colon contraction in a paracrine manner via prostaglandin E receptor signaling in intestinal smooth muscle cells without input from the enteric nervous system. Collectively, our data identify TRPV4-expressing MMs as an essential component required for maintaining normal GI motility and provide potential drug targets for GI motility disorders.


Asunto(s)
Colon/fisiología , Motilidad Gastrointestinal , Macrófagos/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Canales Catiónicos TRPV/metabolismo , Animales , Receptor 1 de Quimiocinas CX3C/metabolismo , Colon/fisiopatología , Ciclooxigenasa 1/deficiencia , Ciclooxigenasa 1/metabolismo , Dinoprostona/análisis , Dinoprostona/metabolismo , Femenino , Mucosa Gástrica/citología , Expresión Génica , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Contracción Muscular , Receptores de Prostaglandina E/antagonistas & inhibidores , Receptores de Prostaglandina E/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética
2.
Acta Pharmacol Sin ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862816

RESUMEN

Kv1.3 belongs to the voltage-gated potassium (Kv) channel family, which is widely expressed in the central nervous system and associated with a variety of neuropsychiatric disorders. Kv1.3 is highly expressed in the olfactory bulb and piriform cortex and involved in the process of odor perception and nutrient metabolism in animals. Previous studies have explored the function of Kv1.3 in olfactory bulb, while the role of Kv1.3 in piriform cortex was less known. In this study, we investigated the neuronal changes of piriform cortex and feeding behavior after smell stimulation, thus revealing a link between the olfactory sensation and body weight in Kv1.3 KO mice. Coronal slices including the anterior piriform cortex were prepared, whole-cell recording and Ca2+ imaging of pyramidal neurons were conducted. We showed that the firing frequency evoked by depolarization pulses and Ca2+ influx evoked by high K+ solution were significantly increased in pyramidal neurons of Kv1.3 knockout (KO) mice compared to WT mice. Western blotting and immunofluorescence analyses revealed that the downstream signaling molecules CaMKII and PKCα were activated in piriform cortex of Kv1.3 KO mice. Pyramidal neurons in Kv1.3 KO mice exhibited significantly reduced paired-pulse ratio and increased presynaptic Cav2.1 expression, proving that the presynaptic vesicle release might be elevated by Ca2+ influx. Using Golgi staining, we found significantly increased dendritic spine density of pyramidal neurons in Kv1.3 KO mice, supporting the stronger postsynaptic responses in these neurons. In olfactory recognition and feeding behavior tests, we showed that Kv1.3 conditional knockout or cannula injection of 5-(4-phenoxybutoxy) psoralen, a Kv1.3 channel blocker, in piriform cortex both elevated the olfactory recognition index and altered the feeding behavior in mice. In summary, Kv1.3 is a key molecule in regulating neuronal activity of the piriform cortex, which may lay a foundation for the treatment of diseases related to piriform cortex and olfactory detection.

3.
Mol Pharmacol ; 104(4): 133-143, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37419692

RESUMEN

Licorice is a traditional Chinese medicine and recorded to have pain relief effects in national pharmacopoeia, but the mechanisms behind these effects have not been fully explored. Among the hundreds of compounds in licorice, licochalcone A (LCA) and licochalcone B (LCB) are two important components belonging to the chalcone family. In this study, we compared the analgesic effects of these two licochalcones and the molecular mechanisms. LCA and LCB were applied in cultured dorsal root ganglion (DRG) neurons, and the voltage-gated sodium (NaV) currents and action potentials were recorded. The electrophysiological experiments showed that LCA can inhibit NaV currents and dampen excitabilities of DRG neurons, whereas LCB did not show inhibition effect on NaV currents. Because the NaV1.7 channel can modulate Subthreshold membrane potential oscillations in DRG neuron, which can palliate neuropathic pain, HEK293T cells were transfected with NaV1.7 channel and recorded with whole-cell patch clamp. LCA can also inhibit NaV1.7 channels exogenously expressed in HEK293T cells. We further explored the analgesic effects of LCA and LCB on formalin-induced pain animal models. The animal behavior tests revealed that LCA can inhibit the pain responses during phase 1 and phase 2 of formalin test, and LCB can inhibit the pain responses during phase 2. The differences of the effects on NaV currents between LCA and LCB provide us with the basis for developing NaV channel inhibitors, and the novel findings of analgesic effects indicate that licochalcones can be developed into effective analgesic medicines. SIGNIFICANCE STATEMENT: This study found that licochalcone A (LCA) can inhibit voltage-gated sodium (NaV) currents, dampen excitabilities of dorsal root ganglion neurons, and inhibit the NaV1.7 channels exogenously expressed in HEK293T cells. Animal behavior tests showed that LCA can inhibit the pain responses during phase 1 and phase 2 of formalin test, whereas licochalcone B can inhibit the pain responses during phase 2. These findings indicate that licochalcones could be the leading compounds for developing NaV channel inhibitors and effective analgesic medicines.


Asunto(s)
Neuralgia , Canales de Sodio Activados por Voltaje , Animales , Humanos , Bloqueadores de los Canales de Sodio/farmacología , Células HEK293 , Ganglios Espinales , Sodio , Canal de Sodio Activado por Voltaje NAV1.7
4.
Mol Pharmacol ; 102(3): 150-160, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35764383

RESUMEN

Voltage-gated KV1.3 channel has been reported to be a drug target for the treatment of autoimmune diseases, and specific inhibitors of Kv1.3 are potential therapeutic drugs for multiple diseases. The scorpions could produce various bioactive peptides that could inhibit KV1.3 channel. Here, we identified a new scorpion toxin polypeptide gene ImKTX58 from the venom gland cDNA library of the Chinese scorpion Isometrus maculatus Sequence alignment revealed high similarities between ImKTX58 mature peptide and previously reported KV1.3 channel blockers-LmKTX10 and ImKTX88-suggesting that ImKTX58 peptide might also be a KV1.3 channel blocker. By using electrophysiological recordings, we showed that recombinant ImKTX58 prepared by genetic engineering technologies had a highly selective inhibiting effect on KV1.3 channel. Further alanine scanning mutagenesis and computer simulation identified four amino acid residues in ImKTX58 peptide as key binding sites to KV1.3 channel by forming hydrogen bonds, salt bonds, and hydrophobic interactions. Among these four residues, 28th lysine of the ImKTX58 mature peptide was found to be the most critical amino acid residue for blocking KV1.3 channel. SIGNIFICANCE STATEMENT: In this study, we discovered a scorpion toxin gene ImKTX58 that has not been reported before in Hainan Isometrus maculatus and successfully used the prokaryotic expression system to express and purify the polypeptides encoded by this gene. Electrophysiological experiments on ImKTX58 showed that ImKTX58 has a highly selective blocking effect on KV1.3 channel over Kv1.1, Kv1.2, Kv1.5, SK2, SK3, and BK channels. These findings provide a theoretical basis for designing highly effective KV1.3 blockers to treat autoimmune and other diseases.


Asunto(s)
Venenos de Escorpión , Secuencia de Aminoácidos , Aminoácidos , Animales , Simulación por Computador , Canal de Potasio Kv1.3/química , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Péptidos/química , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Venenos de Escorpión/química , Venenos de Escorpión/metabolismo , Venenos de Escorpión/farmacología , Escorpiones/química , Escorpiones/genética , Escorpiones/metabolismo
5.
J Allergy Clin Immunol ; 147(6): 2236-2248.e16, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33358893

RESUMEN

BACKGROUND: Tick bites severely threaten human health because they allow the transmission of many deadly pathogens, including viruses, bacteria, protozoa, and helminths. Pruritus is a leading symptom of tick bites, but its molecular and neural bases remain elusive. OBJECTIVES: This study sought to discover potent drugs and targets for the specific prevention and treatment of tick bite-induced pruritus and arthropod-related itch. METHODS: We used live-cell calcium imaging, patch-clamp recordings, and genetic ablation and evaluated mouse behavior to investigate the molecular and neural bases of tick bite-induced pruritus. RESULTS: We found that 2 tick salivary peptides, IP defensin 1 (IPDef1) and IR defensin 2 (IRDef2), induced itch in mice. IPDef1 was further revealed to have a stronger pruritogenic potential than IRDef2 and to induce pruritus in a histamine-independent manner. IPDef1 evoked itch by activating mouse MrgprC11 and human MRGPRX1 on dorsal root ganglion neurons. IPDef1-activated MrgprC11/X1 signaling sensitized downstream ion channel TRPV1 on dorsal root ganglion neurons. Moreover, IPDef1 also activated mouse MrgprB2 and its ortholog human MRGPRX2 selectively expressed on mast cells, inducing the release of inflammatory cytokines and driving acute inflammation in mice, although mast cell activation did not contribute to oxidated IPDef1-induced itch. CONCLUSIONS: Our study identifies tick salivary peptides as a new class of pruritogens that initiate itch through MrgprC11/X1-TRPV1 signaling in pruritoceptors. Our work will provide potential drug targets for the prevention and treatment of pruritus induced by the bites or stings of tick and maybe other arthropods.


Asunto(s)
Péptidos/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Canales Catiónicos TRPV/metabolismo , Garrapatas/inmunología , Alérgenos/inmunología , Animales , Susceptibilidad a Enfermedades , Humanos , Ratones , Prurito/inmunología , Prurito/metabolismo
6.
J Neurosci ; 38(2): 474-483, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29192128

RESUMEN

Zinc is a transition metal that has a long history of use as an anti-inflammatory agent. It also soothes pain sensations in a number of animal models. However, the effects and mechanisms of zinc on chemotherapy-induced peripheral neuropathy remain unknown. Here we show that locally injected zinc markedly reduces neuropathic pain in male and female mice induced by paclitaxel, a chemotherapy drug, in a TRPV1-dependent manner. Extracellularly applied zinc also inhibits the function of TRPV1 expressed in HEK293 cells and mouse DRG neurons, which requires the presence of zinc-permeable TRPA1 to mediate entry of zinc into the cytoplasm. Moreover, TRPA1 is required for zinc-induced inhibition of TRPV1-mediated acute nociception. Unexpectedly, zinc transporters, but not TRPA1, are required for zinc-induced inhibition of TRPV1-dependent chronic neuropathic pain produced by paclitaxel. Together, our study demonstrates a novel mechanism underlying the analgesic effect of zinc on paclitaxel-induced neuropathic pain that relies on the function of TRPV1.SIGNIFICANCE STATEMENT The chemotherapy-induced peripheral neuropathy is a major limiting factor affecting the chemotherapy patients. There is no effective treatment available currently. We demonstrate that zinc prevents paclitaxel-induced mechanical hypersensitivity via inhibiting the TRPV1 channel, which is involved in the sensitization of peripheral nociceptors in chemotherapy. Zinc transporters in DRG neurons are required for the entry of zinc into the intracellular side, where it inhibits TRPV1. Our study provides insight into the mechanism underlying the pain-soothing effect of zinc and suggests that zinc could be developed to therapeutics for the treatment of chemotherapy-induced peripheral neuropathy.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Neuralgia/metabolismo , Paclitaxel/toxicidad , Canales Catiónicos TRPV/antagonistas & inhibidores , Acetato de Zinc/farmacología , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/inducido químicamente , Canales Catiónicos TRPV/efectos de los fármacos
7.
J Allergy Clin Immunol ; 141(2): 608-619.e7, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28807414

RESUMEN

BACKGROUND: Chronic itch is a highly debilitating symptom that underlies many medical disorders with no universally effective treatments. Although unique neuronal signaling cascades in the sensory ganglia and spinal cord have been shown to critically promote the pathogenesis of chronic itch, the role of skin-associated cells remains poorly understood. OBJECTIVE: We sought to examine the cutaneous mechanisms underlying transient receptor potential vanilloid 4 (TRPV4)-mediated allergic and nonallergic chronic itch. METHODS: Expression of TRPV4 in chronic itch and healthy control skin preparations was examined by using real-time RT-PCR. Trpv4eGFP mice were used to study the expression and function of TRPV4 in the skin by means of immunofluorescence staining, flow cytometry, calcium imaging, and patch-clamp recordings. Genetic and pharmacologic approaches were used to examine the role and underlying mechanisms of TRPV4 in mouse models of dry skin-associated chronic itch and spontaneous scratching associated with squaric acid dibutylester-induced allergic contact dermatitis. RESULTS: TRPV4 is selectively expressed by dermal macrophages and epidermal keratinocytes in mice. Lineage-specific deletion of TRPV4 in macrophages and keratinocytes reduces allergic and nonallergic chronic itch in mice, respectively. Importantly, TRPV4 expression is significantly increased in skin biopsy specimens from patients with chronic idiopathic pruritus in comparison with skin from healthy control subjects. Moreover, TRPV4-dependent chronic itch requires 5-hydroxytryptamine (5-HT) signaling secondary to activation of distinct 5-HT receptors in mice with allergic and those with nonallergic chronic itch conditions. CONCLUSION: Our study reveals previously unrecognized mechanisms by which TRPV4-expressing epithelial and immune cells in the skin critically and dynamically mediate chronic itch and unravels novel targets for therapeutics in the setting of chronic itch.


Asunto(s)
Dermatitis Alérgica por Contacto/inmunología , Dermis/inmunología , Regulación de la Expresión Génica/inmunología , Queratinocitos/inmunología , Macrófagos/inmunología , Prurito/inmunología , Canales Catiónicos TRPV/inmunología , Animales , Enfermedad Crónica , Dermatitis Alérgica por Contacto/genética , Dermatitis Alérgica por Contacto/patología , Dermis/patología , Femenino , Regulación de la Expresión Génica/genética , Humanos , Queratinocitos/patología , Macrófagos/patología , Masculino , Ratones , Ratones Noqueados , Prurito/genética , Prurito/patología , Canales Catiónicos TRPV/genética
8.
Mol Pharmacol ; 88(1): 131-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25953616

RESUMEN

The environmental irritant chloroform, a naturally occurring small volatile organohalogen, briefly became the world's most popular volatile general anesthetic (VGA) before being abandoned because of its low therapeutic index. When chloroform comes in contact with skin or is ingested, it causes a painful burning sensation. The molecular basis for the pain associated with chloroform remains unknown. In this study, we assessed the role of transient receptor potential (TRP) channel family members in mediating chloroform activation and the molecular determinants of VGA activation of TRPV1. We identified the subpopulation of dorsal root ganglion (DRG) neurons that are activated by chloroform. Additionally, we transiently expressed wild-type or specifically mutated TRP channels in human embryonic kidney cells and used calcium imaging or whole-cell patch-clamp electrophysiology to assess the effects of chloroform or the VGA isoflurane on TRP channel activation. The results revealed that chloroform activates DRG neurons via TRPV1 activation. Furthermore, chloroform activates TRPV1, and it also activates TRPM8 and functions as a potent inhibitor of the noxious chemical receptor TRPA1. The results also indicate that residues in the outer pore region of TRPV1 previously thought to be required for either proton or heat activation of the channel are also required for activation by chloroform and isoflurane. In addition to identifying the molecular basis of DRG neuron activation by chloroform and the opposing effects chloroform has on different TRP channel family members, the findings of this study provide novel insights into the structural basis for the activation of TRPV1 by VGAs.


Asunto(s)
Anestésicos por Inhalación/farmacología , Cloroformo/farmacología , Ganglios Espinales/fisiología , Isoflurano/farmacología , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Animales , Canales de Calcio/metabolismo , Capsaicina/farmacología , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Calor , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Estructura Terciaria de Proteína , Canal Catiónico TRPA1 , Canales Catiónicos TRPM/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
9.
J Biol Chem ; 288(18): 12544-53, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23511633

RESUMEN

Potassium channel functions are often deciphered by using selective and potent scorpion toxins. Among these toxins, only a limited subset is capable of selectively blocking small conductance Ca(2+)-activated K(+) (SK) channels. The structural bases of this selective SK channel recognition remain unclear. In this work, we demonstrate the key role of the electric charges of two conserved arginine residues (Arg-485 and Arg-489) from the SK3 channel outer vestibule in the selective recognition by the SK3-blocking BmP05 toxin. Indeed, individually substituting these residues with histidyl or lysyl (maintaining the positive electric charge partially or fully), although decreasing BmP05 affinity, still preserved the toxin sensitivity profile of the SK3 channel (as evidenced by the lack of recognition by many other types of potassium channel-sensitive charybdotoxin). In contrast, when Arg-485 or Arg-489 of the SK3 channel was mutated to an acidic (Glu) or alcoholic (Ser) amino acid residue, the channel lost its sensitivity to BmP05 and became susceptible to the "new" blocking activity by charybdotoxin. In addition to these SK3 channel basic residues important for sensitivity, two acidic residues, Asp-492 and Asp-518, also located in the SK3 channel outer vestibule, were identified as being critical for toxin affinity. Furthermore, molecular modeling data indicate the existence of a compact SK3 channel turret conformation (like a peptide screener), where the basic rings of Arg-485 and Arg-489 are stabilized by strong ionic interactions with Asp-492 and Asp-518. In conclusion, the unique properties of Arg-485 and Arg-489 (spatial orientations and molecular interactions) in the SK3 channel account for its toxin sensitivity profile.


Asunto(s)
Arginina/metabolismo , Modelos Moleculares , Venenos de Escorpión/química , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Arginina/genética , Caribdotoxina/química , Caribdotoxina/metabolismo , Células HEK293 , Humanos , Venenos de Escorpión/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/química , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
11.
Br J Pharmacol ; 180(8): 1132-1147, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36479683

RESUMEN

BACKGROUND AND PURPOSE: Intravenous infusion of chemotherapy drugs can cause severe chemotherapy-induced phlebitis (CIP) in patients. However, the underlying mechanism of CIP development remains unclear. EXPERIMENTAL APPROACH: RNA-sequencing analysis was used to identify potential disease targets in CIP. Guanylate binding protein-5 (GBP5) genetic deletion approaches also were used to investigate the role of GBP5 in NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in lipopolysaccharide (LPS) primed murine bone-marrow-derived macrophages (BMDMs) induced by vinorelbine (VIN) in vitro and in mouse models of VIN-induced CIP in vivo. The anti-CIP effect of aescin was evaluated, both in vivo and in vivo. KEY RESULTS: Here, we show that the expression of GBP5 was upregulated in human peripheral blood mononuclear cells from CIP patients. Genetic ablation of GBP5 in murine macrophages significantly alleviated VIN-induced CIP in the experimental mouse model. Mechanistically, GBP5 contributed to the inflammatory responses through activating NLRP3 inflammasome and driving the production of the inflammatory cytokine IL-1ß. Moreover, aescin, a mixture of triterpene saponins extracted from horse chestnut seed, can alleviate CIP by inhibiting the GBP5/NLRP3 axis. CONCLUSION AND IMPLICATIONS: These findings suggest that GBP5 is an important regulator of NLRP3 inflammasome in CIP mouse model. Our work further reveals that aescin may serve as a promising candidate in the clinical treatment of CIP.


Asunto(s)
Antineoplásicos , Flebitis , Humanos , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Escina , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/farmacología , Interleucina-1beta/metabolismo , Proteínas de Unión al GTP/metabolismo
12.
Front Immunol ; 14: 1094649, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168850

RESUMEN

Introduction: Rheumatoid arthritis (RA) is a common disease mainly affecting joints of the hands and wrists. The discovery of autoantibodies in the serum of patients revealed that RA belonged to the autoimmune diseases and laid a theoretical basis for its immunosuppressive therapy. The pathogenesis of autoimmune diseases mainly involves abnormal activation and proliferation of effector memory T cells, which is closely related to the elevated expression of Kv1.3, a voltage-gated potassium (Kv) channel on the effector memory T cell membrane. Drugs blocking the Kv1.3 channel showed a strong protective effect in RA model animals, suggesting that Kv1.3 is a target for the discovery of specific RA immunosuppressive drugs. Methods: In the present study, we synthesized LrB and studied the effects of LrB on collagen- induced arthritis (CIA) in rats. The clinical score, paw volume and joint morphology of CIA model rats were compared. The percentage of CD3+, CD4+ and CD8+ T cells in rat peripheral blood mononuclear and spleen were analyzed with flow cytometry. The concentrations of inflammatory cytokines interleukin (IL)-1b, IL-2, IL-4, IL-6, IL-10 and IL-17 in the serum of CIA rats were analyzed with enzyme-linked immunosorbent assay. The IL-1b and IL-6 expression in joints and the Kv1.3 expression in peripheral blood mononuclear cells (PBMCs) were quantified by qPCR. To further study the mechanisms of immunosuppressive effects of LrB, western blot and immunofluorescence were utilized to study the expression of Kv1.3 and Nuclear Factor of Activated T Cells 1 (NFAT1) in two cell models - Jurkat T cell line and extracted PBMCs. Results: LrB effectively reduced the clinical score and relieved joint swelling. LrB could also decrease the percentage of CD4+ T cells, while increase the percentage of CD8+ T cells in peripheral blood mononuclear and spleen of rats with CIA. The concentrations of inflammatory cytokines interleukin (IL)-1b, IL-2, IL-6, IL-10 and IL-17 in the serum of CIA rats were significantly reduced by LrB. The results of qPCR showed that Kv1.3 mRNA in the PBMCs of CIA rats was significantly higher than that of the control and significantly decreased in the LrB treatment groups. In addition, we confirmed in cell models that LrB significantly decreased Kv1.3 protein on the cell membrane and inhibited the activation of Nuclear Factor of Activated T Cells 1 (NFAT1) with immune stimulus. Conclusion: In summary, this study revealed that LrB could block NFAT1 activation and reduce Kv1.3 expression in activated T cells, thus inhibiting the proliferation of lymphocytes and the release of inflammatory cytokines, thereby effectively weakening the autoimmune responses in CIA rats. The effects of immunosuppression due to LrB revealed its potential medicinal value in the treatment of RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Enfermedades Autoinmunes , Ratas , Animales , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Leucocitos Mononucleares/metabolismo , Interleucina-2/metabolismo , Citocinas/metabolismo , Enfermedades Autoinmunes/metabolismo
13.
Protein Expr Purif ; 82(2): 325-31, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22343065

RESUMEN

Long-chain and cysteine-rich scorpion toxins exhibit various pharmacological profiles for different voltage-gated sodium channel subtypes. However, the exploration of toxin structure-function relationships has progressed slowly due to the difficulty of obtaining synthetic or recombinant peptides. We now report that we have established an effective expression and purification approach for the novel scorpion toxin BmαTX14. BmαTX14 was over-expressed as inclusion bodies in Escherichia coli. The insoluble pellet was successfully transformed into active peptide by using a refolding procedure. One-step purification by reverse-phase HPLC was sufficient to generate chromatographically pure peptide. The yield of recombinant toxin reached 4mg from 1L LB medium. The pharmacological data further showed that BmαTX14 selectively inhibited the fast inactivation of mNa(v)1.4 (EC(50)=82.3±15.7nM) rather than that of rNa(v)1.2 (EC(50)>30µM), which indicates that BmαTX14 is a new α-like toxin. This work enables further structural, functional, and pharmacological studies of BmαTX14 and similar toxins.


Asunto(s)
Proteínas de Insectos/biosíntesis , Proteínas Recombinantes de Fusión/biosíntesis , Venenos de Escorpión/biosíntesis , Bloqueadores de los Canales de Sodio/farmacología , Secuencia de Aminoácidos , Animales , Cromatografía de Afinidad , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Proteínas de Insectos/aislamiento & purificación , Proteínas de Insectos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Datos de Secuencia Molecular , Ratas , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/farmacología , Venenos de Escorpión/aislamiento & purificación , Venenos de Escorpión/farmacología , Bloqueadores de los Canales de Sodio/aislamiento & purificación
14.
J Ethnopharmacol ; 298: 115679, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36058481

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shi Wei Ru Xiang powder (SWR) is a traditional Tibetan medicinal formula with the effect of dispelling dampness and dispersing cold. In clinical practice, SWR is generally used for the treatment of hyperuricemia (HUA). However, its exact pharmacological mechanism remains unclear. AIMS OF THE STUDY: To preliminarily elucidate the regulatory effects and possible mechanisms of SWR on hyperuricemia using network pharmacology and experimental validation. MATERIALS AND METHODS: A mouse model of hyperuricemia was used to evaluate the alleviating effect of SWR on hyperuricemia. The major components of SWR were acquired by UPLC-Q/TOF-MS. The potential molecular targets and associated signaling pathways were predicted through network pharmacology. The mechanism of action of SWR in ameliorating hyperuricemia was further investigated by pharmacological evaluation. RESULTS: Mice with hyperuricemia and renal dysfunction were ameliorated by SWR. The 36 components of SWR included phenolic acids, terpenoids, alkaloids and flavonoids were identified. Network pharmacological analysis showed the involvement of the above compounds, and 115 targets were involved to treat hyperuricemia, involving multiple biological processes and different signaling pathways. Pharmacological experiments validated that SWR ameliorated hyperuricemic nephropathy in mice by modulating the mitogen-activated protein kinase (MAPK) signaling pathway, nuclear factor kappaB (NF-κB) signaling pathway and NOD-like receptor signaling pathway. CONCLUSION: MAPK signaling pathway, NF-κB signaling pathway and NOD-like receptor signaling pathway play important roles in the therapeutic effects of SWR on hyperuricemia.


Asunto(s)
Medicamentos Herbarios Chinos , Hiperuricemia , Animales , Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Medicina Tradicional Tibetana , Ratones , FN-kappa B , Proteínas NLR , Farmacología en Red , Polvos/uso terapéutico
15.
J Biochem Mol Toxicol ; 25(4): 244-51, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21308893

RESUMEN

Toxins from the venoms of scorpion, snake, and spider are valuable tools to probe the structure-function relationship of ion channels. In this investigation, a new toxin gene encoding the peptide ImKTx1 was isolated from the venom gland of the scorpion Isometrus maculates by constructing cDNA library method, and the recombinant ImKTx1 peptide was characterized physiologically. The mature peptide of ImKTx1 has 39 amino acid residues including six cross-linked cysteines. The electrophysiological experiments showed that the recombinant ImKTx1 peptide had a pharmacological profile where it inhibited Kv1.3 channel currents with IC(50) of 1.70 n± 1.35 µM, whereas 10 µM rImKTx1 peptide inhibited about 40% Kv1.1 and 42% Kv1.2 channel currents, respectively. In addition, 10 µM rImKTx1 had no effect on the Nav1.2 and Nav1.4 channel currents. Multiple sequence alignments showed that ImKTx1 had no homologous toxin peptide, but it was similar with Ca(2+) channel toxins from scorpion and spider in the arrangement of cysteine residues. These results indicate that ImKTx1 is a new Kv1.3 channel blocker with a unique primary structure. Our results indicate the diversity of K(+) channel toxins from scorpion venoms and also provide a new molecular template targeting Kv1.3 channel.


Asunto(s)
Canal de Potasio Kv1.3/antagonistas & inhibidores , Péptidos/farmacología , Venenos de Escorpión/farmacología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Células HEK293 , Humanos , Canal de Potasio Kv1.3/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Péptidos/química , Péptidos/genética , Estructura Secundaria de Proteína , Venenos de Escorpión/química , Venenos de Escorpión/genética , Escorpiones/genética , Análisis de Secuencia de ADN
16.
Front Pharmacol ; 12: 685092, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248635

RESUMEN

Loureirin B (LrB) is a constituent extracted from traditional Chinese medicine Resina Draconis. It has broad biological functions and an impressive immunosuppressive effect that has been supported by numerous studies. However, the molecular mechanisms underlying Loureirin B-induced immune suppression are not fully understood. We previously reported that Loureirin B inhibited KV1.3 channel, calcium ion (Ca2+) influx, and interleukin-2 (IL-2) secretion in Jurkat T cells. In this study, we applied CRISPR/Cas9 to edit KV1.3 coding gene KCNA3 and successfully generated a KV1.3 knockout (KO) cell model to determine whether KV1.3 KO was sufficient to block the Loureirin B-induced immunosuppressive effect. Surprisingly, we showed that Loureirin B could still inhibit Ca2+ influx and IL-2 secretion in the Jurkat T cells in the absence of KV1.3 although KO KV1.3 reduced about 50% of Ca2+ influx and 90% IL-2 secretion compared with that in the wild type cells. Further experiments showed that Loureirin B directly inhibited STIM1/Orai1 channel in a dose-dependent manner. Our results suggest that Loureirin B inhibits Ca2+ influx and IL-2 secretion in Jurkat T cells by inhibiting both KV1.3 and STIM1/Orai1 channels. These studies also revealed an additional molecular target for Loureirin B-induced immunosuppressive effect, which makes it a promising leading compound for treating autoimmune diseases.

17.
J Proteome Res ; 9(6): 3118-25, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20405930

RESUMEN

Protein-protein control recognition remains a huge challenge, and its development depends on understanding the chemical and biological mechanisms by which these interactions occur. Here we describe a protein-protein control recognition technique based on the dominant electrostatic interactions occurring between the proteins. We designed a potassium channel inhibitor, BmP05-T, that was 90.32% identical to wild-type BmP05. Negatively charged residues were translocated from the nonbinding interface to the binding interface of BmP05 inhibitor, such that BmP05-T now used BmP05 nonbinding interface as the binding interface. This switch demonstrated that nonbinding interfaces were able to control the orientation of protein binding interfaces in the process of protein-protein recognition. The novel function findings of BmP05-T peptide suggested that the control recognition technique described here had the potential for use in designing and utilizing functional proteins in many biological scenarios.


Asunto(s)
Modelos Biológicos , Péptidos/química , Ingeniería de Proteínas/métodos , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/metabolismo , Canales de Potasio/química , Canales de Potasio/metabolismo , Unión Proteica , Conformación Proteica , Venenos de Escorpión/química , Venenos de Escorpión/metabolismo , Alineación de Secuencia , Electricidad Estática , Termodinámica
18.
Cell Biosci ; 9: 99, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31890149

RESUMEN

BACKGROUND: The cDNA Library of venomous animals could provide abundant bioactive peptides coding information and is an important resource for screening bioactive peptides that target and regulate disease-related ion channels. To further explore the potential medicinal usage of the transcriptome database of Scorpiops Pocoki's venom gland, this research identified the function of a new potassium channel toxin Ktx-Sp2, whose gene was screened from the database by sequence alignment. RESULTS: The mature peptide of Ktx-Sp2 was obtained by genetic engineering. Whole-cell patch-clamp experiment showed that Ktx-Sp2 peptide could effectively block three types of exogenous voltage-gated potassium channels-Kv1.1, Kv1.2 and Kv1.3, among which, the blocking activity for Kv1.3 was relatively high, showing selectivity to some extent. Taking Jurkat T cells as the cell model, this study found that Ktx-Sp2 peptide could also effectively block endogenous Kv1.3, significantly reduce the free calcium concentration in Jurkat T cells, inhibit the activation of Jurkat T cells and reduce the release of inflammatory cytokines IL-2, showing a strong immunosuppressant effect. CONCLUSIONS: This study further proves that the transcriptome database of the Scorpiops Pocoki venom gland is an important resource for discovery of novel bioactive polypeptide coding genes. The newly screened Kv1.3 channel blocker Ktx-Sp2 expanded the range of leading compounds for the treatment of autoimmune diseases and promoted the development and application of scorpion toxin peptides in the field of biomedicine.

19.
Peptides ; 28(12): 2306-12, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18006119

RESUMEN

LmKTx8, the first toxic gene isolated from the venom of scorpion Lychas mucronatus by constructing cDNA library method, was expressed and characterized physiologically. The mature peptide has 40 residues including six conserved cysteines, and is classified as one of alpha-KTx11 subfamily. Using patch-clamp recording, the recombinant LmKTx8 (rLmKTx8) was used to test the effect on voltage-gated K(+) channels (Kv1.3) stably expressed in COS7 cells and large conductance-Ca(2+)-activated K(+) (BK) channels expressed in HEK293. The results of electrophysiological experiments showed that the rLmKTx8 was a potent inhibitor of Kv1.3 channels with an IC(50)=26.40+/-1.62nM, but 100nM rLmKTx8 did not block the BK currents. LmKTx8 or its analogs might serve as a potential candidate for the development of new drugs for autoimmune diseases.


Asunto(s)
Bloqueadores de los Canales de Potasio/farmacología , Venenos de Escorpión/genética , Venenos de Escorpión/farmacología , Escorpiones/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Clonación Molecular , Cartilla de ADN/genética , ADN Complementario/genética , Electrofisiología , Humanos , Canal de Potasio Kv1.3/antagonistas & inhibidores , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Técnicas de Placa-Clamp , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
Cell Biosci ; 7: 60, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29142737

RESUMEN

BACKGROUND: Specific and selective peptidic blockers of Kv1.3 channels can serve as a valuable drug lead for treating T cell-mediated autoimmune diseases, and scorpion venom is an important source of kv1.3 channel inhibitors. Through conducting transcriptomic sequencing for the venom gland of Scorpiops pococki from Xizang province of China, this research aims to discover a novel functional gene encoding peptidic blocker of Kv1.3, and identify its function. RESULTS: We screened out a new peptide toxin KTX-Sp4 which had 43 amino acids including six cysteine residues. Electrophysiological experiments indicated that recombinant expression products of KTX-Sp4 blocked both endogenous and exogenous Kv1.3 channel concentration-dependently, and exhibited good selectivity on Kv1.3 over Kv1.1, Kv1.2, respectively. Mutation experiments showed that the Kv1 turret region was responsible for the selectivity of KTX-Sp4 peptide on Kv1.3 over Kv1.1. CONCLUSIONS: This work not only provided a novel lead compound for the development of anti autoimmune disease drugs, but also enriched the molecular basis for the interaction between scorpion toxins and potassium channels, serving as an important theoretical basis for designing high selective Kv1.3 peptide inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA