Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(7): 6292-6299, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305764

RESUMEN

Two-dimensional material-supported single metal atom catalysts have been extensively studied and proved effective in electrocatalytic reactions in recent years. In this work, we systematically investigate the OER catalytic properties of single metal atoms supported by the NiN2 monolayer. Several typical transition metals with high single atom catalytic activity, such as Fe, Co, Ru, Rh, Pd, Ir, and Pt, were selected as catalytic active sites. The energy calculations show that transition metal atoms (Fe, Co, Ru, Rh, Pd, Ir, and Pt) are easily embedded in the NiN2 monolayer with Ni vacancies due to the negative binding energy. The calculated OER overpotentials of Fe, Co, Ru, Rh, Pd, Ir and Pt embedded NiN2 monolayers are 0.92 V, 0.47 V, 1.13 V, 0.66 V, 1.25 V, 0.28 V, and 0.94 V, respectively. Compared to the 0.57 V OER overpotential of typical OER noble metal catalysts IrO2, Co@NiN2 and Ir@NiN2 exhibit high OER catalytic activity due to lower overpotential, especially for Ir@NiN2. The high catalytic activity of the Ir embedded NiN2 monolayer can be explained well by the d-band center model. It is found that the adsorption strength of the embedded TM atoms with intermediates follows a linear relationship with their d-band centers. Besides, the overpotential of the Ir embedded NiN2 monolayer can be further reduced to 0.24 V under -2% biaxial strain. Such findings are expected to be employed in more two-dimensional material-supported single metal atom catalyzed reactions.

2.
Phys Chem Chem Phys ; 26(9): 7688-7694, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38372067

RESUMEN

Understanding how the electronic state of transition metal atoms can influence molecular adsorption on a substrate is of great importance for many applications. Choosing NH3 as a model molecule, its adsorption behavior on defected SnS2 monolayers is investigated. The number of valence electrons n is controlled by decorating the monolayer with different transition metal atoms, ranging from Sc to Zn. Density-Functional Theory based calculations show that the adsorption energy of NH3 molecules oscillates with n and shows a clear odd-even pattern. There is also a mirror symmetry of the adsorption energies for large and low electron numbers. This unique behavior is mainly governed by the oxidation state of the TM ions. We trace back the observed trends of the adsorption energy to the orbital symmetries and ligand effects which affect the interaction between the 3σ orbitals (NH3) and the 3d orbitals of the transition metals. This result unravels the role which the spin state of TM ions plays in different crystal fields for the adsorption behavior of molecules. This new understanding of the role of the electronic structure on molecular adsorption can be useful for the design of high efficiency nanodevices in areas such as sensing and photocatalysis.

3.
Breast Cancer Res Treat ; 197(2): 343-354, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36409395

RESUMEN

PURPOSE: Whether peripheral immune cell subsets can predict pathological complete response (pCR) in breast cancer patients remains to be elucidated. We aimed to dissect the relationship between peripheral immune cell subsets and pCR. METHODS: Two hundred and twenty-six eligible patients from two prospective clinical trials (SHPD001 and SHPD002) in China were randomly divided into a training cohort and a validation cohort. The breast cancer subtypes in this study included hormone receptor (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative (n = 95), HER2-positive (n = 100), and triple negative (n = 31) breast cancer. We defined the "Neo-Peripheral Adaptive Immune Score" for neoadjuvant chemotherapy (neoPAI Score) based on the percentages of CD4 + T cells, CD8 + T cells, B cells, and the CD4 + /CD8 + ratio in peripheral blood. We also evaluated the ability of the neoPAI Score derived from tumor-infiltrating immune cells (TIICs) to predict survival by employing The Cancer Genome Atlas-Breast Cancer (TCGA-BRCA) database. RESULTS: In the training cohort, multivariate analysis showed that HR status [odds ratio (OR) 0.325; 95% confidence interval (CI) 0.135-0.761; P = 0.010], HER2 status (OR 2.657; 95% CI 1.266-5.730; P = 0.011), Ki67 index (OR 3.191; 95% CI 1.509-6.956; P = 0.003), histological grade (OR 2.297; 95% CI 1.031-5.290; P = 0.045) and neoPAI Score (OR 4.451; 95% CI 1.608-13.068; P = 0.005) were independent predictors of pCR. In the validation cohort, histological grade (OR 3.779; 95% CI 3.793-1.136 × 103; P = 0.008) and neoPAI Score (OR 90.828; 95% CI 3.827-9.843 × 103; P = 0.019) were independent predictors of pCR. The Immune Model that integrated the neoPAI Score was more accurate in predicting pCR than the Clinical Model that exclusively contained clinicopathological parameters in both cohorts. In TCGA-BRCA database, the neoPAI Score constructed from TIICs can predict the progression-free interval (P = 0.048) of breast cancer. CONCLUSION: The neoPAI Score defined by the percentages of peripheral immune cell subsets could be used as a potential biomarker for neoadjuvant chemotherapy efficacy.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Estudios Prospectivos , Terapia Neoadyuvante , Supervivencia sin Enfermedad , Receptor ErbB-2/metabolismo , Inducción de Remisión , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
4.
J Transl Med ; 21(1): 400, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340461

RESUMEN

BACKGROUND: Upregulation of the PD-L1 (CD274) immune checkpoint ligand on the tumor surface facilitates tumor immune escape and limits the application of immunotherapy in various cancers, including breast cancer. However, the mechanisms underlying high PD-L1 levels in cancers are still poorly understood. METHODS: Bioinformatics analyses and in vivo and in vitro experiments were carried out to assess the association between CD8+ T lymphocytes and TIMELESS (TIM) expression, and to discover the mechanisms of TIM, the transcription factor c-Myc, and PD-L1 in breast cancer cell lines. RESULTS: The circadian gene TIM enhanced PD-L1 transcription and facilitated the aggressiveness and progression of breast cancer through the intrinsic and extrinsic roles of PD-L1 overexpression. Bioinformatic analyses of our RNA sequencing data in TIM-knockdown breast cancer cells and public transcriptomic datasets showed that TIM might play an immunosuppressive role in breast cancer. We found that TIM expression was inversely associated with CD8+ T lymphocyte infiltration in human breast cancer samples and subcutaneous tumor tissues. In vivo and in vitro experiments demonstrated that TIM knockdown increased CD8+ T lymphocyte antitumor activity. Furthermore, our results showed that TIM interacts with c-Myc to enhance the transcriptional capability of PD-L1 and facilitates the aggressiveness and progression of breast cancer through the intrinsic and extrinsic roles of PD-L1 overexpression. Moreover, public database analysis suggested that high TIM levels were positively related to PD-L1 inhibitor therapeutic response. CONCLUSIONS: Mechanistically, we first found that TIM could upregulate PD-L1 by interacting with c-Myc to enhance the transcriptional capability of c-Myc to PD-L1. Altogether, our findings not only provide a novel therapeutic strategy to treat breast cancer by targeting the oncogenic effect of TIM but also indicate that TIM is a promising biomarker for predicting the benefit of anti-PD-L1 immunotherapy.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Antígeno B7-H1/metabolismo , Neoplasias de la Mama/genética , Linfocitos T CD8-positivos , Perfilación de la Expresión Génica , Inmunoterapia , Células MCF-7 , Transcriptoma
5.
J Chem Phys ; 159(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37655775

RESUMEN

The interaction between adjacent active sites is crucial to balance the efficiency and utilization of functional atoms in single-atom catalysts. Herein, the catalytic activity of hydrogen evolution reaction at different site (nitrogen coordinated transition metal centers embedded in graphene) distances was comprehensively investigated by density functional theory calculations. The results show that a proximity effect of reactivity and site spacing can be identified in the Co-series single-atom catalysts. Although the proximity effect is more linearly responded with the site spacing along x direction, an optimal distance of ∼0.8 and ∼2.8 nm are found for Co and Rh, Ir atoms, respectively. An in-depth analysis of the electronic property reveals that the proximity effect is caused by the distinct net charge of the active site, which is affected by the dz2 position relative to EF. Subsequently, an excess electron nodal channel in x direction was found to serve as a communication pathway between the active sites. Through the finding in this work, an optimal Fe-N2C2 structure was deliberately designed and has shown prominent proximity effect as Co-series do. The results reported in this work provide a simple and effective tuning method for the reactivity of a single-atom catalyst.

6.
BMC Med Imaging ; 23(1): 216, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129778

RESUMEN

BACKGROUND: Due to the highly heterogeneity of the breast cancer, it would be desirable to obtain a non-invasive method to early predict the treatment response and survival outcome of the locally advanced breast cancer (LABC) patients undergoing neoadjuvant chemotherapy (NAC). This study aimed at investigating whether strain elastography (SE) can early predict the pathologic complete response (pCR) and recurrence-free survival (RFS) in LABC patients receiving NAC. METHODS: In this single-center retrospective study, 122 consecutive women with LABC who underwent SE examination pre-NAC and after one and two cycles of NAC enrolled in the SHPD001(NCT02199418) and SHPD002 (NCT02221999) trials between January 2014 and August 2017 were included. The SE parameters (Elasticity score, ES; Strain ratio, SR; Hardness percentage, HP, and Area ratio, AR) before and during NAC were assessed. The relative changes in SE parameters after one and two cycles of NAC were describe as ΔA1 and ΔA2, respectively. Logistic regression analysis and Cox proportional hazards model were used to identify independent variables associated with pCR and RFS. RESULTS: Forty-nine (40.2%) of the 122 patients experienced pCR. After 2 cycles of NAC, SR2 (odds ratio [OR], 1.502; P = 0.003) and ΔSR2 (OR, 0.013; P = 0.015) were independently associated with pCR, and the area under the receiver operating characteristic curve for the combination of them to predict pCR was 0.855 (95%CI: 0.779, 0.912). Eighteen (14.8%) recurrences developed at a median follow-up of 60.7 months. A higher clinical T stage (hazard ratio [HR] = 4.165; P = 0.005.), a higher SR (HR = 1.114; P = 0.002.) and AR (HR = 1.064; P <  0.001.) values at pre-NAC SE imaging were independently associated with poorer RFS. CONCLUSION: SE imaging features have the potential to early predict pCR and RFS in LABC patients undergoing NAC, and then may offer valuable predictive information to guide personalized treatment.


Asunto(s)
Neoplasias de la Mama , Diagnóstico por Imagen de Elasticidad , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Terapia Neoadyuvante , Ultrasonido , Estudios Retrospectivos
7.
Angew Chem Int Ed Engl ; 62(51): e202315113, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37937998

RESUMEN

The protein phenotypes of extracellular vesicles (EVs) have emerged as promising biomarkers for cancer diagnosis and treatment monitoring. However, the technical challenges in rapid isolation and multiplexed molecular detection of EVs have limited their clinical practice. Herein, we developed a magnetically driven tandem chip to achieve streamlined rapid isolation and multiplexed profiling of surface protein biomarkers of EVs. Driven by magnetic force, the magnetic nanomixers not only act as tiny stir bars to promote mass transfer and enhance reaction efficiency of EVs, but also transport on communicating vessels of the tandem chip continuously and expedite the assay workflow. We designed cyclic surface enhancement of Raman scattering (SERS) tags to bind with target EVs and then release them by exonuclease I, eliminating steric hindrance and amplifying the SERS signal of multiple protein biomarkers on EVs. Due to the excellent assay performance, six breast cancer biomarkers were detected simultaneously on EVs using only 10 µL plasma within 1.5 h. The unweighted SUM signature offers great accuracy in discriminating breast cancer patients from healthy donors. Overall, the dynamic magnetic driving tandem chip offers a new avenue to advance the clinical application of EV-based liquid biopsy.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Biomarcadores de Tumor/metabolismo , Vesículas Extracelulares/metabolismo , Fenotipo
8.
Int J Cancer ; 150(10): 1664-1676, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34957551

RESUMEN

CYP2D6 gene polymorphism has a profound impact upon the effect of tamoxifen as adjuvant endocrine therapy in breast cancer. However, it had never been reported whether the adverse drug reactions vary by CYP2D6 metabolic status for patients treated with tamoxifen or toremifene. We conducted a retrospective study in breast cancer patients to investigate the impact of CYP2D6 metabolic status on liver dysfunction events, gynecological events and dyslipidemia events. According to CYP2D6*10 (100C → T) genotype, the enrolled patients were further categorized into four cohorts (extensive metabolizers taking tamoxifen [EM + TAM], extensive metabolizers taking toremifene [EM + TOR], intermediate metabolizers taking tamoxifen [IM + TAM], and intermediate metabolizers taking toremifene [IM + TOR]). A total of 192 patients were included in the study, with a median follow-up time of 26.2 months. In EM + TAM cohort, the risks of liver dysfunction events (P = .004) and gynecological events (P = .004) were significantly higher compared to EM + TOR cohort. In IM + TAM cohort, the risks of liver dysfunction events (P = .14) and gynecological events (P = .99) were not significantly different from IM + TOR cohort. A significant decrease of total cholesterol was observed in EM + TAM cohort around 1 year after taking tamoxifen (P < .001). Significant interactions between CYP2D6 metabolic status and endocrine agents were observed in terms of liver dysfunction events (P-interaction = .007) and gynecological events (P-interaction = .026). These findings suggested that CYP2D6 gene polymorphism played a significant role in predicting liver dysfunction, gynecological diseases and lipid metabolism changes among patients taking tamoxifen or toremifene.


Asunto(s)
Neoplasias de la Mama , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Antineoplásicos Hormonales/efectos adversos , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Estudios de Cohortes , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Femenino , Genotipo , Humanos , Estudios Retrospectivos , Tamoxifeno/efectos adversos , Toremifeno/efectos adversos
9.
Phys Chem Chem Phys ; 24(43): 26556-26563, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36285510

RESUMEN

Low activity and poor product selectivity of CO2 reduction have seriously hampered its further practical application. Introducing p-block atoms to the catalyst is regarded as a promising strategy due to the versatility of p orbitals and diversity of p-block elements. Here, we systematically studied the influence of p-block atom X (X = C, N, O, S, and Se) on CO2 catalytic properties on a Sn(200) surface by first-principles calculation. Our work shows that all the p-block atoms are relative stable with Ef in the range of -5.11 to -3.59 eV. Further calculation demonstrates that the diversity of the p-block atoms results in unique CO2 electrocatalytic activity and product selectivity. Interestingly, the p-block C atom shows bi-functional activity to form two-electron products HCOOH and CO, with the corresponding energy barriers remarkably low at about 0.19 eV and 0.28 eV. In particular, the p-block S(Se) atom appears to have striking HCOOH selectivity, with the energy barrier to form HCOOH only a quarter of that to form the CO product. This unusual behavior is mainly attributed to the adsorption strength and frontier orbital interaction between the p-block atom and intermediates. These findings can effectively provide a valuable insight into the design of highly efficient CO2 electrocatalyst.

10.
J Surg Res ; 247: 172-179, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31761441

RESUMEN

BACKGROUND: Imaging-guided breast biopsy is crucial for breast lesion evaluation. We aim to make the first comprehensive comparison of two different ultrasound-guided breast biopsy devices: 14-G conventional core needle biopsy (CCNB) and the newly applied cable-free, low-vacuum-assisted 10-G breast biopsy system, Elite. METHODS: We retrospectively collected patients with suspected breast cancer who underwent ultrasound-guided 14-G CCNB or 10-G Elite from October 2013 through March 2018 and compared the biopsy result with the result after operation. We analyzed the test performance of the two methods and their accuracy in immunohistochemistry assays mainly including estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and Ki67. We also analyzed the accuracy of 10-G Elite with frozen sections. RESULTS: Six hundred seventy-four patients who underwent 14-G CCNB and 592 patients who underwent 10-G Elite were finally included in the research. Negative predictive value with Elite was higher than with CCNB (Elite 86.5%, CCNB 41.7%, P < 0.001). Sensitivity (Elite 97.7%, CCNB 96.2%, P = 0.1), specificity (Elite 98.7%, CCNB 90.0%, P = 0.1), positive predictive value (Elite 99.8%, CCNB 99.7%, P = 0.7), and false negative rate (Elite 2.3%, CCNB 3.8%, P = 0.1) showed no difference between two devices. In terms of immunohistochemistry assay, Ki67 agreement of Elite was higher than that of CCNB (Elite 79.5%, CCNB 73.4%, P = 0.045). Estrogen receptor agreement (Elite 90.6%, CCNB 87.7%, P = 0.2), progesterone receptor agreement (Elite 83.9%, CCNB 80.9%, P = 0.3), and human epidermal growth factor receptor two agreement (Elite 94.2%, CCNB 93.5%, P = 0.7) showed no difference between Elite and CCNB. The rate of an inconclusive biopsy result was lower with Elite than with CCNB (Elite 1.5%, CCNB 3.3%, P = 0.045). CONCLUSIONS: 10-G Elite has higher negative predictive value, higher Ki67 agreement, and lower inconclusive results than 14-G CCNB. Elite can be a reliable substitute for 14-G CCNB.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias de la Mama/diagnóstico , Mama/patología , Agujas , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Biopsia con Aguja Gruesa/instrumentación , Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Secciones por Congelación , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , Ultrasonografía Intervencional , Vacio
11.
Phys Chem Chem Phys ; 22(19): 10455-10461, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31674604

RESUMEN

The TiO2-Pt-water interface is of great relevance in photocatalysis where Pt is widely used as a co-catalyst for enhancing hydrogen evolution in aqueous TiO2. Using ab initio molecular dynamics, we investigated this interface focusing on Pt single atoms supported on anatase TiO2(101) in a water environment. Based on recent experiments showing a broad distribution of Pt coordination sites in TiO2, we examined six distinct single-Pt supported species with different nominal Pt oxidation states, namely: Pt, PtOH, and PtO2 species adsorbed on the stoichiometric surface; Pt adsorbed at a surface oxygen vacancy (Ov); and Pt substituting a surface Ti cation (PtTi), both without and with an accompanying Ov (PtTi + Ov). As found for the pristine anatase surface, interfacial water remained intact in the presence of a nearly neutral Pt adatom within the time duration of our simulations (∼15 ps). Similarly, no (or only temporary) water dissociation was observed at the PtTi + Ov and PtO2 interfaces, due to the formation of very stable planar Pt coordination structures that interact only weakly with water. In contrast, water dissociated with OH- (H+) on the Pt atom when this substituted a surface Ti (oxygen) ion as well as on PtOH. The significant proton affinity of Pt atoms at surface oxygen vacancies suggests that negatively charged Pt species are particularly efficient at catalyzing hydrogen evolution in aqueous TiO2.

12.
Phys Chem Chem Phys ; 22(2): 615-623, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31822873

RESUMEN

An appropriate band structure and effective carrier separation are very important for the performance of a solar photocatalyst. In this paper, based on first-principles calculations, it was predicted that blue phosphorene (BlueP) and a C2N monolayer can form a promising metal-free type-II heterojunction. The electronic structure of the BlueP/C2N heterojunction facilitated the overall water splitting reactions well. The projected band structure showed that the conduction band edge was contributed by C2N and the valence band edge was dominated by BlueP. Under the combination of the driving force of the band offset and the built-in electric field between the two layers, the photo-generated electrons and holes were transferred spontaneously to the conduction band of C2N and the valence band of BlueP, respectively. An effective carrier separation in the heterostructure was thus achieved. More notably, the obtained light absorption of the BlueP/C2N junction showed an obvious red-shift, which greatly extended the area of light adsorption to the visible light region. We further proposed that strain could also be used to modulate the band gap and the band edge positions of the heterojunction. Our results not only provide a theoretical design, but also reveal the fundamental separation mechanism of the photo-generated carriers in the BlueP/C2N heterojunction.

13.
Cancer Cell Int ; 19: 78, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30976202

RESUMEN

BACKGROUND: Zinc finger E-box binding homeobox 1 (ZEB1) is a molecule involved in the progression of epithelial-to-mesenchymal transition (EMT) in various kinds of cancers. Here, we aimed to determine whether the expression of the ZEB1 protein is related to the response of patients to neoadjuvant therapy as well as their survival outcome. METHODS: Immunohistochemistry (IHC) was performed on paraffin-embedded tumor samples from core needle biopsy before neoadjuvant therapy (NAT). Univariate and multivariate logistic regression analyses were used to analyze the associations between the protein expression of ZEB1 and the pathological complete response (pCR) outcome. Kaplan-Meier plots and log-rank tests were used to compare disease-free survival (DFS) between groups. A Cox proportional hazards model was used to calculate the adjusted hazard ratio (HR) with a 95% confidential interval (95% CI). RESULTS: A total of 75 patients were included in the IHC test. High ZEB1 protein expression was associated with a low pCR rate in both univariate (OR = 0.260, 95% CI 0.082-0.829, p = 0.023) and multivariate (OR = 0.074, 95% CI 0.011-0.475, p = 0.006) logistic regression analyses. High ZEB1 protein expression was also associated with a short DFS according to both the log-rank test (p = 0.023) and Cox proportional hazard model (HR = 9.025, 95% CI 1.024-79.519, p = 0.048). In hormone receptor positive (HorR-positive) patients, high ZEB1 protein expression was also associated with a lower pCR (OR = 0.054, 95% CI 0.007-0.422, p = 0.005) and a poorer DFS (HR = 10.516, 95% CI 1.171-94.435, p = 0.036) compared with low ZEB1 protein expression. In HER2-overexpressing patients, ZEB1 protein expression was also associated with poor survival (p = 0.042). CONCLUSIONS: Our results showed that high ZEB1 protein expression was a negative predictive marker of pCR and DFS in neoadjuvant therapy in breast cancer patients and in HorR-positive and HER2-overexpressing subgroups.Trial registration NCT, NCT02199418. Registered 24 July 2014-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02199418?term=NCT02199418&rank=1. NCT, NCT 02221999. Registered 21 August 2014-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02221999?term=NCT02221999&rank=1.

14.
BMC Cancer ; 19(1): 877, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488093

RESUMEN

BACKGROUND: Breast cancer is the most common malignancy in women, and neoadjuvant chemotherapy has been recommended to the patients with locally advanced breast cancer as the initial treatments. Long non-coding RNA (lncRNA) MEG3, an identified tumor suppressor, has been implicated in the development of various cancers. However, there is no data to evaluate the effect of MEG3 polymorphisms on neoadjuvant treatment in the breast cancer. METHODS: Genotyping was performed using Nanodispenser Spectro CHIP chip spotting and Mass ARRAY Compact System. Univariate and multivariate logistic regression analyses were used to analyze the associations between the MEG3 polymorphisms and the pathological complete response (pCR). The disease-free survival (DFS) was estimated by the Kaplan-Meier method, and multivariate Cox proportional hazards models were used to calculate the hazard ratios (HRs) with a 95% confidential interval (CI). RESULTS: A total of 144 patients with available pretreatment blood species were enrolled in the SHPD002 clinic trial of neoadjuvant chemotherapy for breast cancer. MEG3 rs10132552 were significantly associated with good response (Adjusted OR = 2.79, 95% CI 1.096-7.103, p = 0.031) in dominant model. Median follow-up time was 20 months. In multiple regression analysis, rs10132552 TC + CC (adjusted HR = 0.127, 95% CI 0.22-0.728, p = 0.02) and rs941576 AG + GG (adjusted HR = 0.183, 95% CI 0.041-0.807, p = 0.025) were significantly associated with good DFS. MEG3 rs7158663 (OR = 0.377, 95% CI 0.155-0.917, p = 0.032) were associated with a low risk of hemoglobin decrease in dominant models. CONCLUSIONS: LncRNA MEG3 polymorphisms were associated with the chemotherapy response and toxicity of paclitaxel and cisplatin. The result indicates that MEG3 polymorphisms can be considered as the predictive and prognostic markers for the breast cancer patients. TRIAL REGISTRATION: Retrospectively registered (ClinicalTrials. Gov identifier: NCT02221999 ); date of registration: Aug 20th, 2014.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Terapia Neoadyuvante/métodos , Polimorfismo de Nucleótido Simple , ARN Largo no Codificante/genética , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/uso terapéutico , Biomarcadores de Tumor/genética , Neoplasias de la Mama/sangre , Cisplatino/administración & dosificación , Cisplatino/uso terapéutico , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Genotipo , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Paclitaxel/administración & dosificación , Paclitaxel/uso terapéutico , Pronóstico , Modelos de Riesgos Proporcionales
15.
Future Oncol ; 15(15): 1781-1789, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30900910

RESUMEN

Aim: Benefit of longer course of taxane-anthracycline-based adjuvant chemotherapy is yet to be identified. Patients & methods: We conducted a retrospectively matched-pair analysis to compare four cycles of fluorouracil, epirubicin and cyclophosphamide followed by four cycles of docetaxel (4FEC-4T) with three cycles of FEC followed by three cycles of docetaxel (3FEC-3T) as adjuvant chemotherapy for early-stage breast cancer. One hundred and thirty-seven patients treated with 4FEC-4T were matched to 411 in 3FEC-3T. The primary end point was event-free survival (EFS). The secondary end point was distant disease-free survival (DDFS). Results: The 4FEC-4T resulted in significantly longer EFS than matched 3FEC-3T (p = 0.020). Furthermore, DDFS was superior in the 4FEC-4T to that in the 3FEC-3T (p = 0.046). Conclusion: Extending taxane-anthracycline-based regimens with identical schedules significantly improves EFS and DDFS for early-stage breast cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Quimioterapia Adyuvante , Terapia Combinada , Femenino , Humanos , Estimación de Kaplan-Meier , Análisis por Apareamiento , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Resultado del Tratamiento , Carga Tumoral
16.
Phys Chem Chem Phys ; 20(26): 17658-17665, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29931014

RESUMEN

We have used two-photon photoemission (2PPE) spectroscopy and first-principles density functional theory calculations to investigate the electronic structure and photoabsorption of the reduced anatase TiO2(101) and rutile TiO2(110) surfaces. 2PPE measurements on anatase (101) show an excited resonance induced by reduced Ti3+ species centered around 2.5 eV above the Fermi level (EF). While this state is similar to that observed on the rutile (110) surface, the intensity of the 2PPE peak is much weaker. The computed oscillator strengths of the transitions from the occupied gap states to the empty states in the conduction band show peaks between 2.0 and 3.0 eV above the conduction band minimum (CBM) on both surfaces, confirming the presence of empty Ti3+ resonances at these energies. Although the crystal field environment of Ti ions is octahedral in both rutile and anatase, Ti3+ ions exhibit distinct d orbital splittings due to different distortions of the TiO6 units. This affects the directions of the transition dipoles from the gap states to the conduction band, explaining the polarization dependence of the 2PPE signal in the two materials. Our results also show that the Ti3+ induced states in the band gap are shallower in anatase than in rutile. The d → d transitions from the occupied gap states to the empty Ti3+ excited states in anatase can occur at energies well below 3 eV, consistent with the observed visible-light photocatalytic activity of Ti3+ self-doped anatase.

17.
Phys Chem Chem Phys ; 19(31): 20968-20973, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28745740

RESUMEN

Bismuth oxyhalides (BiOX, X = Cl, Br, and I) are a new family of promising photocatalysts. BiOCl and BiOBr possess large band gaps and weak absorption in visible light regions, which limit their applications. Although the band gap of BiOI is suitable to absorb most of the visible light, its redox capability is very weak. In this work, the doping and strain effects on the electronic structures and optical properties of BiOCl are explored using first principle calculations. The results show that doping in BiOCl, especially co-doping of Sb and I atoms, can obviously decrease the band gaps along with enhancing the optical absorption coefficients of pristine BiOCl because of the electronegativity difference between Sb/I atoms and Bi/Cl atoms. Meanwhile the band gap of BiOCl can be tuned under strain. This work offers potential strategies to enhance BiOCl absorption coefficients in the visible light region and its photocatalyst activity.

18.
J Am Chem Soc ; 137(28): 9146-52, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26121118

RESUMEN

In reduced TiO2, electronic transitions originating from the Ti(3+)-induced states in the band gap are known to contribute to the photoabsorption, being in fact responsible for the material's blue color, but the excited states accessed by these transitions have not been characterized in detail. In this work we investigate the excited state electronic structure of the prototypical rutile TiO2(110) surface using two-photon photoemission spectroscopy (2PPE) and density functional theory (DFT) calculations. Using 2PPE, an excited resonant state derived from Ti(3+) species is identified at 2.5 ± 0.2 eV above the Fermi level (EF) on both the reduced and hydroxylated surfaces. DFT calculations reveal that this excited state is closely related to the gap state at ∼1.0 eV below EF, as they both result from the Jahn-Teller induced splitting of the 3d orbitals of Ti(3+) ions in reduced TiO2. Localized excitation of Ti(3+) ions via 3d → 3d transitions from the gap state to this empty resonant state significantly increases the TiO2 photoabsorption and extends the absorbance to the visible region, consistent with the observed enhancement of the visible light induced photocatalytic activity of TiO2 through Ti(3+) self-doping. Our work reveals the physical origin of the Ti(3+) related photoabsorption and visible light photocatalytic activity in prototypical TiO2 and also paves the way for the investigation of the electronic structure and photoabsorption of other metal oxides.

19.
Phys Chem Chem Phys ; 17(21): 14083-7, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25959535

RESUMEN

Graphite may be viewed as a low-surface-energy carbon allotrope with little layer-layer interaction. Other low-surface-energy allotropes but with much stronger layer-layer interaction may also exist. Here, we report a first-principles prediction for one of the known carbon allotropes, bcc-C6 (a body centered carbon allotrope with six atoms per primitive unit), that should have exceptionally low-surface energy and little size dependence down to only a couple layer thickness. This unique property may explain the existence of the relatively-high-energy bcc-C6 during growth. The electronic properties of the bcc-C6 thin layers can also be intriguing: the (111), (110), and (001) thin layers have direct band gap, indirect band gap, and metallic character, respectively. The refrained chemical reactivity of the thin layers does not disappear after cleaving, as lithium-doped (Li-doped) 3-layers (111) has a noticeably increased binding energy of H2 molecules with a maximum storage capacity of 10.8 wt%.

20.
J Clin Med ; 13(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38610617

RESUMEN

Background: Recently, the classification of HER2 status evolves from binary to ternary, and HER2-low expression may exhibit prognostic significance. We aimed to investigate whether HER2-low tumor is distinct from HER2-zero or HER2-positive tumors, and then to develop a modified staging system (mNeo-Bioscore) that incorporates HER2-low status into Neo-Bioscore. Patients and Methods: This cohort study was conducted using data from the prospective database on breast cancer patients between January 2014 and February 2019. Results: Among 259 patients enrolled in the study, the HER2-low tumor exhibited significantly lower histological grade, pathological staging and Ki-67 level than the other two groups. HER2-low patients and HER2-positive patients receiving concurrent HER2-directed therapy may have similar LRFS (p = 0.531) and OS (p = 0.853), while HER2-zero peers may have significantly worse LRFS (p = 0.006) and OS (p = 0.017). In particular, a similar trend was also found in the patients without pathological complete response after surgery. Incorporation of HER2-low status made improvement in fit: 5-year OS rate estimates ranged from 33.33% to 100% for mNeo-Bioscore vs 61.36% to 100% for Neo-Bioscore. Conclusions: This study demonstrated that HER2-low tumor may exhibit prognostic significance. The innovative mNeo-Bioscore, based on a new classification of HER2 status, may serve as a prognostic staging system superior to Neo-Bioscore.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA