Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Opt Express ; 31(4): 6974-6981, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823943

RESUMEN

A sulfur dioxide (SO2) gas sensor based on the photoacoustic spectroscopy technology in a sulfur hexafluoride (SF6) gas matrix was demonstrated for SF6 decomposition components monitoring in the power system. A passive Q-switching laser diode (LD) pumped all-solid-state 266 nm deep-ultraviolet laser was exploited as the laser excitation source. The photoacoustic signal amplitude is linear related to the incident optical power, whereas, a random laser power jitter is inevitable since the immature laser manufacturing technology in UV spectral region. A compact laser power stabilization system was developed for better sensor performance by adopting a photodetector, a custom-made internal closed-loop feedback controller and a Bragg acousto-optic modulator (AOM). The out-power stability of 0.04% was achieved even though the original power stability was 0.41% for ∼ 2 hours. A differential two-resonator photoacoustic cell (PAC) was designed for weak photoacoustic signal detection. The special physical constants of SF6 buffer gas induced a high-Q factor of 85. A detection limit of 140 ppbv was obtained after the optimization, which corresponds to a normalized noise equivalent absorption coefficient of 3.2 × 10-9 cm-1WHz-1/2.

2.
Opt Express ; 29(21): 34258-34268, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809220

RESUMEN

A ppb-level H2S and CO photoacoustic spectroscopy (PAS) gas sensor was developed by using a two-stage commercial optical fiber amplifier with a full output power of 10 W. Two near-infrared diode lasers with the central wavenumbers of 6320.6 cm-1 and 6377.4 cm-1 were employed as the excitation laser source. A time-division multiplexing method was used to simultaneously detect CO and H2S with an optical switch. A dual-resonator structural photoacoustic cell (PAC) was theoretically simulated and designed with a finite element analysis. A µV level background noise was achieved with the differential and symmetrical PAC. The performance of the multi-component sensor was evaluated after the optimization of frequency, pressure and modulation depth. The minimum detection limits of 31.7 ppb and 342.7 ppb were obtained for H2S and CO at atmospheric pressure.

3.
Molecules ; 25(5)2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32155966

RESUMEN

A nitrogen dioxide (NO2) photoacoustic sensor for environmental monitoring was developed using a low-cost high-power laser diode emitting at 450 nm. A compact low-noise photoacoustic detection module was designed to reduce the sensor size and to suppress noise. A LabVIEW-based control system was employed for the sensor. The parameters of the sensor were studied in detail in terms of laser power and operating pressure. The linearity of the sensor response with laser power and NO2 concentration confirms that saturation does not occur. At atmospheric pressure, a 3σ detection limit of 250 ppt (part per trillion by volume) was achieved with a 1-s averaging time, which corresponds to the specific detectivity of 3.173 × 10-9 W cm-1 Hz-1/2. A 72 h outdoor continuous on-line monitoring of environmental NO2 was implemented to demonstrate the reliability and validity of the developed NO2 sensor.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Dióxido de Nitrógeno/análisis , Técnicas Fotoacústicas/instrumentación , Técnicas Fotoacústicas/métodos , Monitoreo del Ambiente/métodos , Diseño de Equipo , Rayos Láser , Límite de Detección , Presión , Relación Señal-Ruido , Vapor
4.
Opt Express ; 27(4): A224-A234, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876138

RESUMEN

A ppb-level photoacoustic multicomponent gas sensor system for sulfur hexafluoride (SF6) decomposition detection was developed by the use of two near-infrared (NIR) diode lasers and an ultraviolet (UV) solid-state laser. A telecommunication fiber amplifier module was used to boost up the excitation optical power from the two NIR lasers. A dual-channel high-Q photoacoustic cell (PAC) was designed for the simultaneous detection of CO, H2S, and SO2 in SF6 buffer gas by means of a time division multiplexing (TDM) method. Feasibility and performance of the multicomponent sensor was evaluated, resulting in minimum detection limits of 435 ppbv, 89 ppbv, and 115 ppbv for CO, H2S, and SO2 detection at atmospheric pressure.

5.
Opt Lett ; 44(5): 1108-1111, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30821782

RESUMEN

We report a novel calculation model for dense spot pattern multi-pass cells consisting of two common identical spherical mirrors. A modified ABCD matrix without the paraxial approximation was developed to describe the ray propagation between two spherical mirrors and the reflection on the mirror surfaces. The intrinsic aberration from the spherical curvature creates a set of intricate variants with respect to a standard Herriot circle spot pattern. A series of detailed numerical simulations are implemented to verify that the input and output beams remain the same and, hence, retrace the same ray pattern. The set of exotic spot patterns obtained with a high fill factor improves the utilization efficiency of the mirror surfaces and produces a longer total optical path length with a low mirror cost.

6.
Opt Express ; 25(14): 16761-16770, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28789177

RESUMEN

A photoacoustic module (PAM) for methane detection was developed by combining a novel 3.2 µm interband cascade light emitting device (ICLED) with a compact differential photoacoustic cell. The ICLED with a 22-stage interband cascade active core emitted a collimated power of ~700 µW. A concave Al-coat reflector was positioned adjacent to the photoacoustic cell to enhance the gas absorption length. Assembly of the ICLED and reflector with the photoacoustic cell resulted in a robust and portable PAM without any moving parts. The PAM performance was evaluated in terms of operating pressure, sensitivity and linearity. A 1σ detection limit of 3.6 ppmv was achieved with a 1-s integration time.

7.
Opt Express ; 24(10): A752-61, 2016 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-27409949

RESUMEN

A sub-ppb-level nitrogen dioxide (NO2) QEPAS sensor is developed by use of a cost-effective wide stripe laser diode (LD) emitting at 450 nm and a novel background noise suppression method called scattered light modulation cancellation method (SL-MOCAM). The SL-MOCAM is a variant of modulation spectroscopy using two light sources: excitation and balance light sources. The background noise caused by the stray light of the excitation light sources can be eliminated by exposing the QEPAS spectrophone to the modulated balance light. The noise in the LD-excited QEPAS system is investigated in detail and the results shows that > ~90% background noise can be effectively eliminated by the SL-MOCAM. For NO2 detection, a 1σ detection limit of ~60 ppb is achieved for 1 s integration time and the detection limit can be improved to 0.6 ppb with an integration time of 360 s. Moreover, the SLMOCAM shows a remote working ability in the preliminary investigation.

8.
Opt Lett ; 41(5): 978-81, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26974095

RESUMEN

Quartz-enhanced photoacoustic spectroscopy (QEPAS) with a single-tube acoustic microresonator (AmR) inserted between the prongs of a custom quartz tuning fork (QTF) was developed, investigated, and optimized experimentally. Due to the high acoustic coupling efficiency between the AmR and the QTF, the single-tube on-beam QEPAS spectrophone configuration improves the detection sensitivity by 2 orders of magnitude compared to a bare QTF. This approach significantly reduces the spectrophone size with respect to the traditional on-beam spectrophone configuration, thereby facilitating the laser beam alignment. A 1σ normalized noise equivalent absorption coefficient of 1.21×10(-8) cm(-1)·W/√Hz was obtained for dry CO2 detection at normal atmospheric pressure.

9.
Sensors (Basel) ; 16(2): 162, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26828491

RESUMEN

A near-IR CO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) is evaluated using humidified nitrogen samples. Relaxation processes in the CO-N2-H2O system are investigated. A simple kinetic model is used to predict the sensor performance at different gas pressures. The results show that CO has a ~3 and ~5 times slower relaxation time constant than CH4 and HCN, respectively, under dry conditions. However, with the presence of water, its relaxation time constant can be improved by three orders of magnitude. The experimentally determined normalized detection sensitivity for CO in humid gas is 1.556 × 10(-8) W ⋅ cm (-1)/Hz(1/2).

10.
Sensors (Basel) ; 15(10): 26743-55, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26506351

RESUMEN

A selective and sensitive quartz enhanced photoacoustic spectroscopy (QEPAS) sensor, employing an erbium-doped fiber amplifier (EDFA), and a distributed feedback (DFB) laser operating at 1582 nm was demonstrated for simultaneous detection of ammonia (NH3) and hydrogen sulfide (H2S). Two interference-free absorption lines located at 6322.45 cm(-1) and 6328.88 cm(-1) for NH3 and H2S detection, respectively, were identified. The sensor was optimized in terms of current modulation depth for both of the two target gases. An electrical modulation cancellation unit was equipped to suppress the background noise caused by the stray light. An Allan-Werle variance analysis was performed to investigate the long-term performance of the fiber-amplifier-enhanced QEPAS sensor. Benefitting from the high power boosted by the EDFA, a detection sensitivity (1σ) of 52 parts per billion by volume (ppbv) and 17 ppbv for NH3 and H2S, respectively, were achieved with a 132 s data acquisition time at atmospheric pressure and room temperature.


Asunto(s)
Amoníaco/análisis , Sulfuro de Hidrógeno/análisis , Técnicas Fotoacústicas/métodos , Análisis Espectral/métodos , Monitoreo del Ambiente , Diseño de Equipo , Erbio , Técnicas Fotoacústicas/instrumentación , Análisis Espectral/instrumentación
11.
Photoacoustics ; 38: 100620, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38911131

RESUMEN

We present a sensitive and compact quantum cascade laser-based photoacoustic greenhouse gas sensor for the detection of CO2, CH4 and CO and discuss its applicability toward on-line real-time trace greenhouse gas analysis. Differential photoacoustic resonators with different dimensions were used and optimized to balance sensitivity with signal saturation. The effects of ambient parameters, gas flow rate, pressure and humidity on the photoacoustic signal and the spectral cross-interference were investigated. Thanks to the combined operation of in-house designed laser control and lock-in amplifier, the gas detection sensitivities achieved were 5.6 ppb for CH4, 0.8 ppb for CO and 17.2 ppb for CO2, signal averaging time 1 s and an excellent dynamic range beyond 6 orders of magnitude. A continuous outdoor five-day test was performed in an observation station in China's Qinling National Botanical Garden (E longitude 108°29', N latitude 33°43') which demonstrated the stability and reliability of the greenhouse gas sensor.

12.
Photoacoustics ; 31: 100492, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37113272

RESUMEN

Enhancing multi-gas detectability using photoacoustic spectroscopy capable of simultaneous detection, highly selectivity and less cross-interference is essential for dissolved gas sensing application. A T-type photoacoustic cell was designed and verified to be an appropriate sensor, due to the resonant frequencies of which are determined jointly by absorption and resonant cylinders. The three designated resonance modes were investigated from both simulation and experiments to present the comparable amplitude responses by introducing excitation beam position optimization. The capability of multi-gas detection was demonstrated by measuring CO, CH4 and C2H2 simultaneously using QCL, ICL and DFB lasers as excitation sources respectively. The influence of potential cross-sensitivity towards humidity have been examined in terms of multi-gas detection. The experimentally determined minimum detection limits of CO, CH4 and C2H2 were 89ppb, 80ppb and 664ppb respectively, corresponding to the normalized noise equivalent absorption coefficients of 5.75 × 10-7 cm-1 W Hz-1/2, 1.97 × 10-8 cm-1 W Hz-1/2 and 4.23 × 10-8 cm-1 W Hz-1/2.

13.
Photoacoustics ; 33: 100557, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38021284

RESUMEN

We present a quartz enhanced photoacoustic spectroscopy (QEPAS) gas sensor designed for precise monitoring of ammonia (NH3) at ppb-level concentrations. The sensor is based on a novel custom quartz tuning fork (QTF) with a mid-infrared quantum cascade laser emitting at 9.55 µm. The custom QTF with a hammer-shaped prong geometry which is also modified by surface grooves is designed as the acoustic transducer, providing a low resonance frequency of 9.5 kHz and a high-quality factor of 10263 at atmospheric pressure. In addition, a temperature of 50 °C and a large gas flow rate of 260 standard cubic centimeters per minute (sccm) are applied to mitigate the adsorption and desorption effect arising from the polarized molecular of NH3. With 80-mW optical power and 300-ms lock-in integration time, the detection limit is achieved to be 2.2 ppb which is the best value reported in the literature so far for NH3 QEPAS sensors, corresponding to a normalized noise equivalent absorption coefficient of 1.4 × 10-8 W cm-1 Hz-1/2. A five-day continuous monitoring for atmospheric NH3 is performed, verifying the stability and robustness of the presented QEPAS-based NH3 sensor.

14.
Front Genet ; 13: 996941, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276945

RESUMEN

Bi-clustering refers to the task of finding sub-matrices (indexed by a group of columns and a group of rows) within a matrix of data such that the elements of each sub-matrix (data and features) are related in a particular way, for instance, that they are similar with respect to some metric. In this paper, after analyzing the well-known Cheng and Church bi-clustering algorithm which has been proved to be an effective tool for mining co-expressed genes. However, Cheng and Church bi-clustering algorithm and summarizing its limitations (such as interference of random numbers in the greedy strategy; ignoring overlapping bi-clusters), we propose a novel enhancement of the adaptive bi-clustering algorithm, where a shielding complex sub-matrix is constructed to shield the bi-clusters that have been obtained and to discover the overlapping bi-clusters. In the shielding complex sub-matrix, the imaginary and the real parts are used to shield and extend the new bi-clusters, respectively, and to form a series of optimal bi-clusters. To assure that the obtained bi-clusters have no effect on the bi-clusters already produced, a unit impulse signal is introduced to adaptively detect and shield the constructed bi-clusters. Meanwhile, to effectively shield the null data (zero-size data), another unit impulse signal is set for adaptive detecting and shielding. In addition, we add a shielding factor to adjust the mean squared residue score of the rows (or columns), which contains the shielded data of the sub-matrix, to decide whether to retain them or not. We offer a thorough analysis of the developed scheme. The experimental results are in agreement with the theoretical analysis. The results obtained on a publicly available real microarray dataset show the enhancement of the bi-clusters performance thanks to the proposed method.

15.
Photoacoustics ; 25: 100319, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34934620

RESUMEN

In SF6 insulated high-voltage gas power systems, H2O is the most problematic impurity which not only decreases insulation performance but also creates an acidic atmosphere that promotes corrosion. Corrosion damages electrical equipment and leads to leaks, which pose serious safety hazards to people and the environment. A QEPAS-based sensor system for the sub-ppm level H2O detection in SF6 buffer gas was developed by use of a near-infrared commercial DFB diode laser. Since the specific physical constants of SF6 are strongly different from that of N2 or air, the resonant frequency and Q-factor of the bare quartz tuning fork (QTF) had changed to 32,763 Hz and 4173, respectively. The optimal vertical detection position was 1.2 mm far from the QTF opening. After the experimental optimization of acoustic micro-resonator (AmR) parameters, gas pressures, and modulation depths, a detection limit of 0.49 ppm was achieved for an averaging time of 1 s, which provided a powerful prevention tool for the safety monitoring in power systems.

16.
Photoacoustics ; 21: 100228, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33365230

RESUMEN

Enhancement of trace gas detectability using photoacoustic spectroscopy requires the effective suppression of strong background noise for practical applications. An upgraded infrared broadband trace gas detection configuration was investigated based on a Fourier transform infrared (FTIR) spectrometer equipped with specially designed T-resonators and simultaneous differential optical and photoacoustic measurement capabilities. By using acetylene and local air as appropriate samples, the detectivity of the differential photoacoustic mode was demonstrated to be far better than the pure optical approach both theoretically and experimentally, due to the effectiveness of light-correlated coherent noise suppression of non-intrinsic optical baseline signals. The wavelet domain denoising algorithm with the optimized parameters was introduced in detail to greatly improve the signal-to-noise ratio by denoising the incoherent ambient interference with respect to the differential photoacoustic measurement. The results showed enhancement of sensitivity to acetylene from 5 ppmv (original differential mode) to 806 ppbv, a fivefold improvement. With the suppression of background noise accomplished by the optimized wavelet domain denoising algorithm, the broadband differential photoacoustic trace gas detection was shown to be an effective approach for trace gas detection.

17.
ACS Sens ; 5(2): 549-556, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31939293

RESUMEN

A sensitive photoacoustic sensor system for the detection of ppb-level sulfur dioxide (SO2) was developed by the use of a continuous-wave room-temperature, high-power quantum cascade laser (QCL) with an external diffraction grating cavity geometry. The excitation wavelength of the QCL was set to 7.41 µm for the strongest SO2 absorption line strength. A custom-made differential photoacoustic cell (PAC) with two identical resonators was designed to allow a gas flow rate up to 1200 sccm. A qualitative theoretical model was employed in order to understand the dynamic adsorption and desorption processes of SO2 in the PAC walls. A 1σ detection limit of 2.45 ppb, corresponding to a normalized noise equivalent absorption value of 3.32 × 10-9 cm-1 W/Hz1/2, was achieved after measures for suppressing the absorption-desorption effect were taken.


Asunto(s)
Láseres de Semiconductores/uso terapéutico , Técnicas Fotoacústicas/métodos , Humanos
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 216: 154-160, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-30889436

RESUMEN

We demonstrated a versatile and innovative gas sensing system based on a Fabry-Pérot (FP) filter detector, which operates in the spectral range from 3.1 to 4.4µm (3226-2273cm-1) with a spectral resolution of 20nm. The developed sensor system can be used to record the entire spectrum by means of a one-time scan or, alternatively, to access selected spectral regions by using the tunable FP filter detector. A multipass cell with an effective path length of 2.5m was implemented to improve the detection sensitivity. The spectra of methane, formaldehyde and carbon dioxide were simultaneously measured, with detection limits of 200ppm, 900ppm and 20ppm, respectively. A seven-day continuous measurement for indoor carbon dioxide gas was carried out demonstrating the stability and robustness of the reported sensor system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA