Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Infect Immun ; 92(3): e0001924, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38353543

RESUMEN

Virus-like particles (VLPs) are protein-based nanoparticles frequently used as carriers in conjugate vaccine platforms. VLPs have been used to display foreign antigens for vaccination and to deliver immunotherapy against diseases. Hemolysin-coregulated proteins 1 (Hcp1) is a protein component of the Burkholderia type 6 secretion system, which participates in intracellular invasion and dissemination. This protein has been reported as a protective antigen and is used in multiple vaccine candidates with various platforms against melioidosis, a severe infectious disease caused by the intracellular pathogen Burkholderia pseudomallei. In this study, we used P22 VLPs as a surface platform for decoration with Hcp1 using chemical conjugation. C57BL/6 mice were intranasally immunized with three doses of either PBS, VLPs, or conjugated Hcp1-VLPs. Immunization with Hcp1-VLPs formulation induced Hcp1-specific IgG, IgG1, IgG2c, and IgA antibody responses. Furthermore, the serum from Hcp1-VLPs immunized mice enhanced the bacterial uptake and opsonophagocytosis by macrophages in the presence of complement. This study demonstrated an alternative strategy to develop a VLPs-based vaccine platform against Burkholderia species.


Asunto(s)
Burkholderia pseudomallei , Burkholderia , Animales , Ratones , Proteínas Hemolisinas , Ratones Endogámicos C57BL , Inmunoglobulina G , Ratones Endogámicos BALB C
2.
EMBO J ; 39(6): e103367, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32037587

RESUMEN

The proofreading exonuclease activity of replicative DNA polymerase excises misincorporated nucleotides during DNA synthesis, but these events are rare. Therefore, we were surprised to find that T7 replisome excised nearly 7% of correctly incorporated nucleotides during leading and lagging strand syntheses. Similar observations with two other DNA polymerases establish its generality. We show that excessive excision of correctly incorporated nucleotides is not due to events such as processive degradation of nascent DNA or spontaneous partitioning of primer-end to the exonuclease site as a "cost of proofreading". Instead, we show that replication hurdles, including secondary structures in template, slowed helicase, or uncoupled helicase-polymerase, increase DNA reannealing and polymerase backtracking, and generate frayed primer-ends that are shuttled to the exonuclease site and excised efficiently. Our studies indicate that active-site shuttling occurs at a high frequency, and we propose that it serves as a proofreading mechanism to protect primer-ends from mutagenic extensions.


Asunto(s)
Bacteriófago T7/genética , ADN Primasa/metabolismo , Reparación del ADN/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/biosíntesis , Bacteriófago T7/enzimología , Dominio Catalítico , ADN Primasa/genética , Cartilla de ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Mutación , Nucleótidos/genética
3.
Cell ; 139(2): 312-24, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19837034

RESUMEN

Human mitochondrial DNA polymerase (Pol gamma) is the sole replicase in mitochondria. Pol gamma is vulnerable to nonselective antiretroviral drugs and is increasingly associated with mutations found in patients with mitochondriopathies. We determined crystal structures of the human heterotrimeric Pol gamma holoenzyme and, separately, a variant of its processivity factor, Pol gammaB. The holoenzyme structure reveals an unexpected assembly of the mitochondrial DNA replicase where the catalytic subunit Pol gammaA interacts with its processivity factor primarily via a domain that is absent in all other DNA polymerases. This domain provides a structural module for supporting both the intrinsic processivity of the catalytic subunit alone and the enhanced processivity of holoenzyme. The Pol gamma structure also provides a context for interpreting the phenotypes of disease-related mutations in the polymerase and establishes a foundation for understanding the molecular basis of toxicity of anti-retroviral drugs targeting HIV reverse transcriptase.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN Polimerasa gamma , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Enfermedades del Sistema Nervioso/genética , Alineación de Secuencia
4.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37628896

RESUMEN

After cellular differentiation, nuclear DNA is no longer replicated, and many of the associated proteins are downregulated accordingly. These include the structure-specific endonucleases Fen1 and DNA2, which are implicated in repairing mitochondrial DNA (mtDNA). Two more such endonucleases, named MGME1 and ExoG, have been discovered in mitochondria. This category of nuclease is required for so-called "long-patch" (multinucleotide) base excision DNA repair (BER), which is necessary to process certain oxidative lesions, prompting the question of how differentiation affects the availability and use of these enzymes in mitochondria. In this study, we demonstrate that Fen1 and DNA2 are indeed strongly downregulated after differentiation of neuronal precursors (Cath.a-differentiated cells) or mouse myotubes, while the expression levels of MGME1 and ExoG showed minimal changes. The total flap excision activity in mitochondrial extracts of these cells was moderately decreased upon differentiation, with MGME1 as the predominant flap endonuclease and ExoG playing a lesser role. Unexpectedly, both differentiated cell types appeared to accumulate less oxidative or alkylation damage in mtDNA than did their proliferating progenitors. Finally, the overall rate of mtDNA repair was not significantly different between proliferating and differentiated cells. Taken together, these results indicate that neuronal cells maintain mtDNA repair upon differentiation, evidently relying on mitochondria-specific enzymes for long-patch BER.


Asunto(s)
ADN Mitocondrial , Endonucleasas de ADN Solapado , Animales , Ratones , Endonucleasas de ADN Solapado/genética , Diferenciación Celular , ADN Mitocondrial/genética , Fibras Musculares Esqueléticas , Reparación del ADN , Endonucleasas
5.
Molecules ; 28(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36838782

RESUMEN

Human mitochondrial DNA (mtDNA) is a 16.9 kbp double-stranded, circular DNA, encoding subunits of the oxidative phosphorylation electron transfer chain and essential RNAs for mitochondrial protein translation. The minimal human mtDNA replisome is composed of the DNA helicase Twinkle, DNA polymerase γ, and mitochondrial single-stranded DNA-binding protein. While the mitochondrial RNA transcription is carried out by mitochondrial RNA polymerase, mitochondrial transcription factors TFAM and TFB2M, and a transcription elongation factor, TEFM, both RNA transcriptions, and DNA replication machineries are intertwined and control mtDNA copy numbers, cellular energy supplies, and cellular metabolism. In this review, we discuss the mechanisms governing these main pathways and the mtDNA diseases that arise from mutations in transcription and replication machineries from a structural point of view. We also address the adverse effect of antiviral drugs mediated by mitochondrial DNA and RNA polymerases as well as possible structural approaches to develop nucleoside reverse transcriptase inhibitor and ribonucleosides analogs with reduced toxicity.


Asunto(s)
Replicación del ADN , Transcripción Genética , Humanos , ARN Mitocondrial , Factores de Transcripción/metabolismo , ADN Mitocondrial/genética , Proteínas Mitocondriales/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Antivirales
6.
J Biol Chem ; 296: 100309, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33482196

RESUMEN

Mitochondrial DNA is located in organelle that house essential metabolic reactions and contains high reactive oxygen species. Therefore, mitochondrial DNA suffers more oxidative damage than its nuclear counterpart. Formation of a repair enzyme complex is beneficial to DNA repair. Recent studies have shown that mitochondrial DNA polymerase (Pol γ) and poly(ADP-ribose) polymerase 1 (PARP1) were found in the same complex along with other mitochondrial DNA repair enzymes, and mitochondrial PARP1 level is correlated with mtDNA integrity. However, the molecular basis for the functional connection between Pol γ and PARP1 has not yet been elucidated because cellular functions of PARP1 in DNA repair are intertwined with metabolism via NAD+ (nicotinamide adenosine dinucleotide), the substrate of PARP1, and a metabolic cofactor. To dissect the direct effect of PARP1 on mtDNA from the secondary perturbation of metabolism, we report here biochemical studies that recapitulated Pol γ PARylation observed in cells and showed that PARP1 regulates Pol γ activity during DNA repair in a metabolic cofactor NAD+ (nicotinamide adenosine dinucleotide)-dependent manner. In the absence of NAD+, PARP1 completely inhibits Pol γ, while increasing NAD+ levels to a physiological concentration that enables Pol γ to resume maximum repair activity. Because cellular NAD+ levels are linked to metabolism and to ATP production via oxidative phosphorylation, our results suggest that mtDNA damage repair is coupled to cellular metabolic state and the integrity of the respiratory chain.


Asunto(s)
ADN Polimerasa gamma/genética , ADN Mitocondrial/genética , NAD/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Humanos , NAD/metabolismo , Estrés Oxidativo/genética , Poli ADP Ribosilación/genética , Conformación Proteica , Mapas de Interacción de Proteínas/genética , Procesamiento Proteico-Postraduccional/genética , Especies Reactivas de Oxígeno/metabolismo
7.
J Am Chem Soc ; 144(51): 23543-23550, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36516439

RESUMEN

Most oxidative damage on mitochondrial DNA is corrected by the base excision repair (BER) pathway. However, the enzyme that catalyzes the rate-limiting reaction─deoxyribose phosphate (dRP) removal─in the multienzymatic reaction pathway has not been completely determined in mitochondria. Also unclear is how a logical order of enzymatic reactions is ensured. Here, we present structural and enzymatic studies showing that human mitochondrial EXOG (hEXOG) exhibits strong 5'-dRP removal ability. We show that, unlike the canonical dRP lyases that act on a single substrate, hEXOG functions on a variety of abasic sites, including 5'-dRP, its oxidized product deoxyribonolactone (dL), and the stable synthetic analogue tetrahydrofuran (THF). We determined crystal structures of hEXOG complexed with a THF-containing DNA and with a partial gapped DNA to 2.9 and 2.1 Šresolutions, respectively. The structures illustrate that hEXOG uses a controlled 5'-exonuclease activity to cleave the third phosphodiester bond away from the 5'-abasic site. This study provides a structural basis for hEXOG's broad spectrum of substrates. Further, we show that hEXOG can set the order of BER reactions by generating an ideal substrate for the subsequent reaction in BER and inhibit off-pathway reactions.


Asunto(s)
Reparación del ADN , Mitocondrias , Humanos , Hidrólisis , ADN Mitocondrial , Estrés Oxidativo , Daño del ADN , Endonucleasas
8.
Nucleic Acids Res ; 48(2): 817-829, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31799610

RESUMEN

Mitochondrial DNA (mtDNA) resides in a high ROS environment and suffers more mutations than its nuclear counterpart. Increasing evidence suggests that mtDNA mutations are not the results of direct oxidative damage, rather are caused, at least in part, by DNA replication errors. To understand how the mtDNA replicase, Pol γ, can give rise to elevated mutations, we studied the effect of oxidation of Pol γ on replication errors. Pol γ is a high fidelity polymerase with polymerase (pol) and proofreading exonuclease (exo) activities. We show that Pol γ exo domain is far more sensitive to oxidation than pol; under oxidative conditions, exonuclease activity therefore declines more rapidly than polymerase. The oxidized Pol γ becomes editing-deficient, displaying a 20-fold elevated mutations than the unoxidized enzyme. Mass spectrometry analysis reveals that Pol γ exo domain is a hotspot for oxidation. The oxidized exo residues increase the net negative charge around the active site that should reduce the affinity to mismatched primer/template DNA. Our results suggest that the oxidative stress induced high mutation frequency on mtDNA can be indirectly caused by oxidation of the mitochondrial replicase.


Asunto(s)
ADN Polimerasa gamma/genética , Replicación del ADN/genética , ADN Mitocondrial/genética , Estrés Oxidativo/genética , Dominio Catalítico/genética , ADN Polimerasa gamma/química , Reparación del ADN/genética , Exonucleasas/genética , Mutación/genética , Conformación Proteica
9.
Biochemistry ; 59(4): 460-470, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31885251

RESUMEN

The theory for allostery has evolved to a modern energy landscape ensemble theory, the major feature of which is the existence of multiple microstates in equilibrium. The properties of microstates are not well defined due to their transient nature. Characterization of apo protein microstates is important because the specific complex of the ligand-bound microstate defines the biological function. The information needed to link biological function and structure is a quantitative correlation of the energy landscapes between the apo and holo protein states. We employed the Escherichia coli cAMP receptor protein (CRP) system to test the features embedded in the ensemble theory because multiple crystalline apo and holo structures are available. Small angle X-ray scattering data eliminated one of the three apo states but not the other two. We defined the underlying energy landscape differences among the apo microstates by employing the computation algorithm COREX/BEST. The same connectivity patterns among residues in apo CRP are retained upon binding of cAMP. The microstates of apo CRP differ from one another by minor structural perturbations, resulting in changes in the energy landscapes of the various domains of CRP. Using the differences in energy landscapes among these apo states, we computed the cAMP binding energetics that were compared with solution biophysical results. Only one of the three apo microstates yielded data consistent with the solution data. The relative magnitude of changes in energy landscapes embedded in various apo microstates apparently defines the ultimate outcome of the cooperativity of binding.


Asunto(s)
Regulación Alostérica/fisiología , Proteína Receptora de AMP Cíclico/química , Biología Computacional/métodos , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Conformación Proteica , Termodinámica
10.
J Am Chem Soc ; 141(27): 10821-10829, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251605

RESUMEN

High fidelity human mitochondrial DNA polymerase (Pol γ) contains two active sites, a DNA polymerization site (pol) and a 3'-5' exonuclease site (exo) for proofreading. Although separated by 35 Å, coordination between the pol and exo sites is crucial to high fidelity replication. The biophysical mechanisms for this coordination are not completely understood. To understand the communication between the two active sites, we used a statistical-mechanical model of the protein ensemble to calculate the energetic landscape and local stability. We compared a series of structures of Pol γ, complexed with primer/template DNA, and either a nucleotide substrate or a series of nucleotide analogues, which are differentially incorporated and excised by pol and exo activity. Despite the nucleotide or its analogues being bound in the pol, Pol γ residue stability varied across the protein, particularly in the exo domain. This suggests that substrate presence in the pol can be "sensed" in the exo domain. Consistent with this hypothesis, in silico mutations made in one active site mutually perturbed the energetics of the other. To identify specific regions of the polymerase that contributed to this communication, we constructed an allosteric network connectivity map that further demonstrates specific pol-exo cooperativity. Thus, a cooperative network underlies energetic connectivity. We propose that Pol γ and other dual-function polymerases exploit an energetic coupling network that facilitates domain-domain communication to enhance discrimination between correct and incorrect nucleotides.


Asunto(s)
ADN Polimerasa gamma/química , Exonucleasas/química , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica , Termodinámica
11.
EMBO J ; 34(14): 1959-70, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26056153

RESUMEN

The human DNA polymerase gamma (Pol γ) is responsible for DNA replication in mitochondria. Pol γ is particularly susceptible to inhibition by dideoxynucleoside-based inhibitors designed to fight viral infection. Here, we report crystal structures of the replicating Pol γ-DNA complex bound to either substrate or zalcitabine, an inhibitor used for HIV reverse transcriptase. The structures reveal that zalcitabine binds to the Pol γ active site almost identically to the substrate dCTP, providing a structural basis for Pol γ-mediated drug toxicity. When compared to the apo form, Pol γ undergoes intra- and inter-subunit conformational changes upon formation of the ternary complex with primer/template DNA and substrate. We also find that the accessory subunit Pol γB, which lacks intrinsic enzymatic activity and does not contact the primer/template DNA directly, serves as an allosteric regulator of holoenzyme activities. The structures presented here suggest a mechanism for processivity of the holoenzyme and provide a model for understanding the deleterious effects of Pol γ mutations in human disease. Crystal structures of the mitochondrial DNA polymerase, Pol γ, in complex with substrate or antiviral inhibitor zalcitabine provide a basis for understanding Pol γ-mediated drug toxicity.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Zalcitabina/toxicidad , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , ADN Polimerasa gamma , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/metabolismo , Inhibidores de la Transcriptasa Inversa/toxicidad , Zalcitabina/química , Zalcitabina/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(28): 8596-601, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26124101

RESUMEN

Nucleoside analog reverse transcriptase inhibitors (NRTIs) are the essential components of highly active antiretroviral (HAART) therapy targeting HIV reverse transcriptase (RT). NRTI triphosphates (NRTI-TP), the biologically active forms, act as chain terminators of viral DNA synthesis. Unfortunately, NRTIs also inhibit human mitochondrial DNA polymerase (Pol γ), causing unwanted mitochondrial toxicity. Understanding the structural and mechanistic differences between Pol γ and RT in response to NRTIs will provide invaluable insight to aid in designing more effective drugs with lower toxicity. The NRTIs emtricitabine [(-)-2,3'-dideoxy-5-fluoro-3'-thiacytidine, (-)-FTC] and lamivudine, [(-)-2,3'-dideoxy-3'-thiacytidine, (-)-3TC] are both potent RT inhibitors, but Pol γ discriminates against (-)-FTC-TP by two orders of magnitude better than (-)-3TC-TP. Furthermore, although (-)-FTC-TP is only slightly more potent against HIV RT than its enantiomer (+)-FTC-TP, it is discriminated by human Pol γ four orders of magnitude more efficiently than (+)-FTC-TP. As a result, (-)-FTC is a much less toxic NRTI. Here, we present the structural and kinetic basis for this striking difference by identifying the discriminator residues of drug selectivity in both viral and human enzymes responsible for substrate selection and inhibitor specificity. For the first time, to our knowledge, this work illuminates the mechanism of (-)-FTC-TP differential selectivity and provides a structural scaffold for development of novel NRTIs with lower toxicity.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Mitocondrias/efectos de los fármacos , Cristalografía por Rayos X , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/química , Humanos , Cinética , Mitocondrias/enzimología , Sondas Moleculares , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Conformación Proteica , Inhibidores de la Transcriptasa Inversa/farmacología , Especificidad por Sustrato
13.
J Biol Chem ; 291(32): 16828-39, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27311715

RESUMEN

Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA.


Asunto(s)
ADN de Hongos/biosíntesis , ADN de Cadena Simple/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , ADN de Hongos/genética , ADN de Cadena Simple/genética , ARN Polimerasas Dirigidas por ADN/genética , Proteínas Mitocondriales/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
14.
Nucleic Acids Res ; 43(15): 7480-8, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26209133

RESUMEN

On average, mutations are deleterious to proteins. Mutations conferring new function to a protein often come at the expense of protein folding or stability, reducing overall activity. Over the years, a panel of T7 RNA polymerases have been designed or evolved to accept nucleotides with modified ribose moieties. These modified RNAs have proven useful, especially in vivo, but the transcriptional yields tend to be quite low. Here we show that mutations previously shown to increase the thermal tolerance of T7 RNA polymerase can increase the activity of mutants with expanded substrate range. The resulting polymerase mutants can be used to generate 2'-O-methyl modified RNA with yields much higher than enzymes currently employed.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Mutación , Transcripción Genética , Proteínas Virales/genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Estabilidad de Enzimas/genética , ARN/biosíntesis , ARN/química , Especificidad por Sustrato , Temperatura , Proteínas Virales/química , Proteínas Virales/metabolismo
15.
Antimicrob Agents Chemother ; 60(9): 5608-11, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27381400

RESUMEN

We found a heterozygous C2857T mutation (R953C) in polymerase gamma (Pol-γ) in an HIV-infected patient with mitochondrial toxicity. The R953C Pol-γ mutant binding affinity for dCTP is 8-fold less than that of the wild type. The R953C mutant shows a 4-fold decrease in discrimination of analog nucleotides relative to the wild type. R953 is located on the "O-helix" that forms the substrate deoxynucleoside triphosphate (dNTP) binding site; the interactions of R953 with E1056 and Y986 may stabilize the O-helix and affect polymerase activity.


Asunto(s)
Antirretrovirales/uso terapéutico , ADN Polimerasa Dirigida por ADN/genética , Mitocondrias/genética , Mutación/genética , Secuencia de Aminoácidos , Sitios de Unión , ADN Polimerasa gamma , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Humanos , Masculino , Persona de Mediana Edad , Conformación Proteica
16.
Sci Adv ; 10(21): eadl3214, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787958

RESUMEN

The replication accuracy of DNA polymerase gamma (Pol γ) is essential for mitochondrial genome integrity. Mutation of human Pol γ arginine-853 has been linked to neurological diseases. Although not a catalytic residue, Pol γ arginine-853 mutants are void of polymerase activity. To identify the structural basis for the disease, we determined a crystal structure of the Pol γ mutant ternary complex with correct incoming nucleotide 2'-deoxycytidine 5'-triphosphate (dCTP). Opposite to the wild type that undergoes open-to-closed conformational changes when bound to a correct nucleotide that is essential for forming a catalytically competent active site, the mutant complex failed to undergo the conformational change, and the dCTP did not base pair with its Watson-Crick complementary templating residue. Our studies revealed that arginine-853 coordinates an interaction network that aligns the 3'-end of primer and dCTP with the catalytic residues. Disruption of the network precludes the formation of Watson-Crick base pairing and closing of the active site, resulting in an inactive polymerase.


Asunto(s)
Emparejamiento Base , Dominio Catalítico , ADN Polimerasa gamma , Humanos , ADN Polimerasa gamma/metabolismo , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/química , Modelos Moleculares , Mutación , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxicitosina/química , Cristalografía por Rayos X , Unión Proteica
17.
Biochemistry ; 52(47): 8590-8, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24147911

RESUMEN

Inflammation-mediated reactive molecules can result in an array of oxidized and halogenated DNA-damage products, including 5-chlorocytosine ((Cl)C). Previous studies have shown that (Cl)C can mimic 5-methylcytosine ((m)C) and act as a fraudulent epigenetic signal, promoting the methylation of previously unmethylated DNA sequences. Although the 5-halouracils are good substrates for base-excision repair, no repair activity has yet been identified for (Cl)C. Because of the apparent biochemical similarities of (m)C and (Cl)C, we have investigated the effects of (m)C and (Cl)C substitution on oligonucleotide structure and dynamics. In this study, we have constructed oligonucleotide duplexes containing C, (Cl)C, and (m)C within a CpG dinucleotide. The thermal and thermodynamic stability of these duplexes were found to be experimentally indistinguishable. Crystallographic structures of duplex oligonucleotides containing (m)C or (Cl)C were determined to 1.2 and 1.9 Å resolution, respectively. Both duplexes are B-form and are superimposable on a previously determined structure of a cytosine-containing duplex with a rmsd of approximately 0.25 Å. NMR solution studies indicate that all duplexes containing cytosine or the cytosine analogues are normal B-form and that no structural perturbations are observed surrounding the site of each substitution. The magnitude of the base-stacking-induced upfield shifts for nonexchangeable base proton resonances are similar for each of the duplexes examined, indicating that neither (m)C nor (Cl)C significantly alter base-stacking interactions. The (Cl)C analogue is paired with G in an apparently normal geometry; however, the G-imino proton of the (Cl)C-G base pair resonates to higher field relative to (m)C-G or C-G, indicating a weaker imino hydrogen bond. Using selective ¹5N-enrichment and isotope-edited NMR, we observe that the amino group of (Cl)C rotates at roughly half of the rate of the corresponding amino groups of the C-G and (m)C-G base pairs. The altered chemical shifts of hydrogen-bonding proton resonances for the (Cl)C-G base pair as well as the slower rotation of the (Cl)C amino group can be attributed to the electron-withdrawing inductive property of the 5-chloro substituent. The apparent similarity of duplexes containing (m)C and (Cl)C demonstrated here is in accord with results of previous biochemical studies and further suggests that (Cl)C is likely to be an unusually persistent form of DNA damage.


Asunto(s)
5-Metilcitosina/química , Citosina/análogos & derivados , Indicadores y Reactivos/química , Oligonucleótidos/química , 5-Metilcitosina/metabolismo , Citosina/química , Citosina/metabolismo , Calor , Enlace de Hidrógeno , Indicadores y Reactivos/metabolismo , Espectroscopía de Resonancia Magnética , Isótopos de Nitrógeno , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , Oligonucleótidos/metabolismo , Difracción de Rayos X
18.
Biomolecules ; 13(8)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37627260

RESUMEN

Poly(ADP-ribose) (PAR) Polymerase 1 (PARP-1), also known as ADP-ribosyl transferase with diphtheria toxin homology 1 (ARTD-1), is a critical player in DNA damage repair, during which it catalyzes the ADP ribosylation of self and target enzymes. While the nuclear localization of PARP-1 has been well established, recent studies also suggest its mitochondrial localization. In this review, we summarize the differences between mitochondrial and nuclear Base Excision Repair (BER) pathways, the involvement of PARP-1 in mitochondrial and nuclear BER, and its functional interplay with other BER enzymes.


Asunto(s)
Reparación del ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Mitocondrias , Poli Adenosina Difosfato Ribosa
19.
Nat Struct Mol Biol ; 30(6): 812-823, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37202477

RESUMEN

Accurate replication of mitochondrial DNA (mtDNA) by DNA polymerase γ (Polγ) is essential for maintaining cellular energy supplies, metabolism, and cell cycle control. To illustrate the structural mechanism for Polγ coordinating polymerase (pol) and exonuclease (exo) activities to ensure rapid and accurate DNA synthesis, we determined four cryo-EM structures of Polγ captured after accurate or erroneous incorporation to a resolution of 2.4-3.0 Å. The structures show that Polγ employs a dual-checkpoint mechanism to sense nucleotide misincorporation and initiate proofreading. The transition from replication to error editing is accompanied by increased dynamics in both DNA and enzyme, in which the polymerase relaxes its processivity and the primer-template DNA unwinds, rotates, and backtracks to shuttle the mismatch-containing primer terminus 32 Å to the exo site for editing. Our structural and functional studies also provide a foundation for analyses of Polγ mutation-induced human diseases and aging.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Genoma Mitocondrial , Humanos , ADN Polimerasa Dirigida por ADN/química , Replicación del ADN , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/genética
20.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37328286

RESUMEN

BACKGROUND: Immune exclusion (IE) where tumors deter the infiltration of immune cells into the tumor microenvironment has emerged as a key mechanism underlying immunotherapy resistance. We recently reported a novel role of discoidin domain-containing receptor 1 (DDR1) in promoting IE in breast cancer and validated its critical role in IE using neutralizing rabbit monoclonal antibodies (mAbs) in multiple mouse tumor models. METHODS: To develop a DDR1-targeting mAb as a potential cancer therapeutic, we humanized mAb9 with a complementarity-determining region grafting strategy. The humanized antibody named PRTH-101 is currently being tested in a Phase 1 clinical trial. We determined the binding epitope of PRTH-101 from the crystal structure of the complex between DDR1 extracellular domain (ECD) and the PRTH-101 Fab fragment with 3.15 Å resolution. We revealed the underlying mechanisms of action of PRTH-101 using both cell culture assays and in vivo study in a mouse tumor model. RESULTS: PRTH-101 has subnanomolar affinity to DDR1 and potent antitumor efficacy similar to the parental rabbit mAb after humanization. Structural information illustrated that PRTH-101 interacts with the discoidin (DS)-like domain, but not the collagen-binding DS domain of DDR1. Mechanistically, we showed that PRTH-101 inhibited DDR1 phosphorylation, decreased collagen-mediated cell attachment, and significantly blocked DDR1 shedding from the cell surface. Treatment of tumor-bearing mice with PRTH-101 in vivo disrupted collagen fiber alignment (a physical barrier) in the tumor extracellular matrix (ECM) and enhanced CD8+ T cell infiltration in tumors. CONCLUSIONS: This study not only paves a pathway for the development of PRTH-101 as a cancer therapeutic, but also sheds light on a new therapeutic strategy to modulate collagen alignment in the tumor ECM for enhancing antitumor immunity.


Asunto(s)
Anticuerpos Monoclonales , Receptor con Dominio Discoidina 1 , Neoplasias , Animales , Ratones , Colágeno/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Matriz Extracelular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Microambiente Tumoral , Anticuerpos Monoclonales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA