Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 15(4): 1607-1617, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29522347

RESUMEN

In this study, a multipronged approach of in vitro experiments, in silico simulations, and in vivo studies was developed to evaluate the dissolution, supersaturation, precipitation, and absorption of three formulations of Compound-A, a BCS class 2 weak base with pH-dependent solubility. In in vitro 2-stage dissolution experiments, the solutions were highly supersaturated with no precipitation at the low dose but increasing precipitation at higher doses. No difference in precipitation was observed between the capsules and tablets. The in vitro precipitate was found to be noncrystalline with higher solubility than the crystalline API, and was readily soluble when the drug concentration was lowered by dilution. A gastric transit and biphasic dissolution (GTBD) model was developed to better mimic gastric transfer and intestinal absorption. Precipitation was also observed in GTBD, but the precipitate redissolved and partitioned into the organic phase. In vivo data from the phase 1 clinical trial showed linear and dose proportional PK for the formulations with no evidence of in vivo precipitation. While the in vitro precipitation observed in the 2-stage dissolution appeared to overestimate in vivo precipitation, the GTBD model provided absorption profiles consistent with in vivo data. In silico simulation of plasma concentrations by GastroPlus using biorelevant in vitro dissolution data from the tablets and capsules and assuming negligible precipitation was in line with the observed in vivo profiles of the two formulations. The totality of data generated with Compound-A indicated that the bioavailability differences among the three formulations were better explained by the differences in gastric dissolution than intestinal precipitation. The lack of intestinal precipitation was consistent with several other BCS class 2 basic compounds in the literature for which highly supersaturated concentrations and rapid absorption were also observed.


Asunto(s)
Absorción Intestinal/fisiología , Preparaciones Farmacéuticas/metabolismo , Comprimidos/metabolismo , Disponibilidad Biológica , Biofarmacia/métodos , Química Farmacéutica/métodos , Simulación por Computador , Humanos , Intestinos/química , Solubilidad , Estómago/fisiología
2.
Mol Pharm ; 14(10): 3577-3587, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28834434

RESUMEN

In this study, two dissolution models were developed to achieve in vitro-in vivo relationship for immediate release formulations of Compound-A, a poorly soluble weak base with pH-dependent solubility and low bioavailability in hypochlorhydric and achlorhydric patients. The dissolution models were designed to approximate the hypo-/achlorhydric and normal fasted stomach conditions after a glass of water was ingested with the drug. The dissolution data from the two models were predictive of the relative in vivo bioavailability of various formulations under the same gastric condition, hypo-/achlorhydric or normal. Furthermore, the dissolution data were able to estimate the relative performance under hypo-/achlorhydric and normal fasted conditions for the same formulation. Together, these biorelevant dissolution models facilitated formulation development for Compound-A by identifying the right type and amount of key excipient to enhance bioavailability and mitigate the negative effect of hypo-/achlorhydria due to drug-drug interaction with acid-reducing agents. The dissolution models use readily available USP apparatus 2, and their broader utility can be evaluated on other BCS 2B compounds with reduced bioavailability caused by hypo-/achlorhydria.


Asunto(s)
Aclorhidria/complicaciones , Liberación de Fármacos , Modelos Químicos , Administración Oral , Disponibilidad Biológica , Química Farmacéutica , Interacciones Farmacológicas , Humanos , Concentración de Iones de Hidrógeno , Solubilidad , Comprimidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA