Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 13(11): 7331-6, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24245252

RESUMEN

A nanohybrid, consisting of layered aluminosilicate as a host material and itraconazole as a guest molecule, was successfully synthesized through the interfacial intercalation reaction across the boundary between water and water-immiscible liquid at the various pH. According to the powder X-ray diffraction pattern, the basal spacing of the intraconazole-layered aluminosilicate nanohybrid increased from 14.7 to 22.7 A depending on the pH of the aqueous suspension. The total amounts of itraconazole in the hybrids were determined to be 2.3-25.4 wt% by HPLC analysis. The in vivo pharmacokinetics study was performed in rats in order to compare the absorptions of itraconazole for the itraconazole-layered aluminosilicate nanohybrid and a commercial product, Sporanox. The pharmacokinetic data for the nanohybrid and Sporanox showed that the mean area under the plasma concentration-time curve (AUC, 2477 +/- 898 ng x hr/mL and 2630 +/- 953 ng x hr/mL, respectively) and maximum concentration (Cmax, 225.4 +/- 77.4 ng x hr/mL and 223.6 +/- 51.9 ng x hr/mL, respectively), were within the bioequivalence (BE) range. Therefore, we concluded that this drug-layered aluminosilicate nanohybrid system has a great potential for its application in formulation of poorly soluble drugs.


Asunto(s)
Silicatos de Aluminio/química , Itraconazol/administración & dosificación , Itraconazol/sangre , Nanocápsulas/química , Nanocápsulas/ultraestructura , Animales , Difusión , Itraconazol/química , Masculino , Ensayo de Materiales , Tasa de Depuración Metabólica , Nanocápsulas/administración & dosificación , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley
2.
Acta Crystallogr C Struct Chem ; 71(Pt 10): 929-35, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26422225

RESUMEN

Two new one-dimensional Cu(II) coordination polymers (CPs) containing the C2h-symmetric terphenyl-based dicarboxylate linker 1,1':4',1''-terphenyl-3,3'-dicarboxylate (3,3'-TPDC), namely catena-poly[[bis(dimethylamine-κN)copper(II)]-µ-1,1':4',1''-terphenyl-3,3'-dicarboxylato-κ(4)O,O':O'':O'''] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena-poly[[aquabis(dimethylamine-κN)copper(II)]-µ-1,1':4',1''-terphenyl-3,3'-dicarboxylato-κ(2)O(3):O(3')] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X-ray crystallography. The 3,3'-TPDC bridging ligands coordinate the Cu(II) ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one-dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one-dimensional coordination polymer chains, forming a two-dimensional network in (I) and a three-dimensional network in (II).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA