Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
EMBO J ; 41(13): e110600, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35703121

RESUMEN

Germ cells are unique in engendering totipotency, yet the mechanisms underlying this capacity remain elusive. Here, we perform comprehensive and in-depth nucleome analysis of mouse germ-cell development in vitro, encompassing pluripotent precursors, primordial germ cells (PGCs) before and after epigenetic reprogramming, and spermatogonia/spermatogonial stem cells (SSCs). Although epigenetic reprogramming, including genome-wide DNA de-methylation, creates broadly open chromatin with abundant enhancer-like signatures, the augmented chromatin insulation safeguards transcriptional fidelity. These insulatory constraints are then erased en masse for spermatogonial development. Notably, despite distinguishing epigenetic programming, including global DNA re-methylation, the PGCs-to-spermatogonia/SSCs development entails further euchromatization. This accompanies substantial erasure of lamina-associated domains, generating spermatogonia/SSCs with a minimal peripheral attachment of chromatin except for pericentromeres-an architecture conserved in primates. Accordingly, faulty nucleome maturation, including persistent insulation and improper euchromatization, leads to impaired spermatogenic potential. Given that PGCs after epigenetic reprogramming serve as oogenic progenitors as well, our findings elucidate a principle for the nucleome programming that creates gametogenic progenitors in both sexes, defining a basis for nuclear totipotency.


Asunto(s)
Epigénesis Genética , Células Germinativas , Animales , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN , Epigenómica , Femenino , Células Germinativas/metabolismo , Masculino , Mamíferos/genética , Ratones , Espermatogonias
2.
3.
Nature ; 517(7535): 466-71, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25533956

RESUMEN

The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Secuencia Conservada , Cinetocoros/metabolismo , Meiosis , Animales , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Femenino , Humanos , Infertilidad/genética , Infertilidad/metabolismo , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Quinasa Tipo Polo 1
4.
Nature ; 495(7440): 236-40, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23486062

RESUMEN

In mammals, sex differentiation of primordial germ cells (PGCs) is determined by extrinsic cues from the environment. In mouse female PGCs, expression of stimulated by retinoic acid gene 8 (Stra8) and meiosis are induced in response to retinoic acid provided from the mesonephroi. Given the widespread role of retinoic acid signalling during development, the molecular mechanisms that enable PGCs to express Stra8 and enter meiosis in a timely manner are unknown. Here we identify gene-dosage-dependent roles in PGC development for Ring1 and Rnf2, two central components of the Polycomb repressive complex 1 (PRC1). Both paralogues are essential for PGC development between days 10.5 and 11.5 of gestation. Rnf2 is subsequently required in female PGCs to maintain high levels of Oct4 (also known as Pou5f1) and Nanog expression, and to prevent premature induction of meiotic gene expression and entry into meiotic prophase. Chemical inhibition of retinoic acid signalling partially suppresses precocious Oct4 downregulation and Stra8 activation in Rnf2-deficient female PGCs. Chromatin immunoprecipitation analyses show that Stra8 is a direct target of PRC1 and PRC2 in PGCs. These data demonstrate the importance of PRC1 gene dosage in PGC development and in coordinating the timing of sex differentiation of female PGCs by antagonizing extrinsic retinoic acid signalling.


Asunto(s)
Óvulo/citología , Óvulo/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Diferenciación Sexual/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Cromatina/genética , Cromatina/metabolismo , Regulación hacia Abajo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Masculino , Meiosis , Ratones , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Complejo Represivo Polycomb 1/deficiencia , Complejo Represivo Polycomb 2/metabolismo , Proteínas/genética , Caracteres Sexuales , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Tretinoina/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/metabolismo
5.
Biol Reprod ; 96(6): 1154-1166, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28453617

RESUMEN

The mechanisms for human germ cell development have remained largely unknown, due to the difficulty in obtaining suitable experimental materials. The establishment of an in vitro system to reconstitute human germ cell development will thus provide a critical opportunity to understand its mechanisms at a molecular level. It has previously been shown that human induced pluripotent stem cells (hiPSCs) are first induced into incipient mesoderm-like cells (iMeLCs), which are in turn induced into primordial germ-cell like cells (PGCLCs) with gene expression properties similar to early migratory PGCs. Here, we report that the efficiency of PGCLC induction varies among hiPSC clones, and, interestingly, the clonal variations in PGCLC induction efficiency are reflected in the gene expression states of the iMeLCs. Remarkably, the expression levels of EOMES, MIXL1, or T in the iMeLCs are positively correlated with the efficiency of subsequent PGCLC generation, while the expressions of CDH1, SOX3, or FGF2 are negatively correlated. These results indicate that the expression changes of these genes occurring during iMeLC induction are key markers indicative of successful induction of PGCLCs, and furthermore, that hiPSC clones have different properties that influence their responsivity to the iMeLC induction. Our study thus provides important insights into the mechanism of hPGC specification as well as the development of a better strategy for inducing human germ cell fate from PSCs in vitro.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Pluripotentes/fisiología , Anticuerpos , Regulación de la Expresión Génica , Humanos , Cariotipo , Células Madre Pluripotentes/clasificación , Cromosomas Sexuales
6.
Nucleic Acids Res ; 43(9): e60, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25722368

RESUMEN

Single-cell mRNA sequencing (RNA-seq) methods have undergone rapid development in recent years, and transcriptome analysis of relevant cell populations at single-cell resolution has become a key research area of biomedical sciences. We here present single-cell mRNA 3-prime end sequencing (SC3-seq), a practical methodology based on PCR amplification followed by 3-prime-end enrichment for highly quantitative, parallel and cost-effective measurement of gene expression in single cells. The SC3-seq allows excellent quantitative measurement of mRNAs ranging from the 10,000-cell to 1-cell level, and accordingly, allows an accurate estimate of the transcript levels by a regression of the read counts of spike-in RNAs with defined copy numbers. The SC3-seq has clear advantages over other typical single-cell RNA-seq methodologies for the quantitative measurement of transcript levels and at a sequence depth required for the saturation of transcript detection. The SC3-seq distinguishes four distinct cell types in the peri-implantation mouse blastocysts. Furthermore, the SC3-seq reveals the heterogeneity in human-induced pluripotent stem cells (hiPSCs) cultured under on-feeder as well as feeder-free conditions, demonstrating a more homogeneous property of the feeder-free hiPSCs. We propose that SC3-seq might be used as a powerful strategy for single-cell transcriptome analysis in a broad range of investigations in biomedical sciences.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Animales , Blastocisto/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Endogámicos C57BL
7.
Nat Cell Biol ; 4(1): 89-93, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11780129

RESUMEN

Fission yeast centromeres, like those of higher eukaryotes, are composed of repeated DNA structures and associated heterochromatin protein complexes, that have a critical function in the faithful segregation of chromosomes during cell division. Cohesin protein complexes, which are essential for sister-chromatid cohesion and proper chromosome segregation, are enriched at centromeric repeats. We have identified a functional and physical link between heterochromatin and cohesin. We find that the preferential localization of cohesins at the centromeric repeats is dependent on Swi6, a conserved heterochromatin protein that is required for proper kinetochore function. Cohesin is also enriched at the mating-type heterochromatic region in a manner that depends on Swi6 and is required to preserve the genomic integrity of this locus. We provide evidence that a cohesin subunit Psc3 interacts with Swi6 and its mouse homologue HP1. These data define a conserved function of Swi6/HP1 in recruitment of cohesin to heterochromatic regions, promoting the proper segregation of chromosomes.


Asunto(s)
Proteínas Fúngicas/metabolismo , Heterocromatina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Factores de Transcripción/metabolismo , Animales , Proteínas de Ciclo Celular , Centrómero/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Proteínas Fúngicas/genética , Heterocromatina/genética , Ratones , Proteínas Nucleares/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe , Factores de Transcripción/genética , Cohesinas
8.
Cell Rep ; 37(5): 109909, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731633

RESUMEN

Human induced pluripotent stem cells (hiPSCs) show variable differentiation potential due to their epigenomic heterogeneity, whose extent/attributes remain unclear, except for well-studied elements/chromosomes such as imprints and the X chromosomes. Here, we show that seven hiPSC lines with variable germline potential exhibit substantial epigenomic heterogeneity, despite their uniform transcriptomes. Nearly a quarter of autosomal regions bear potentially differential chromatin modifications, with promoters/CpG islands for H3K27me3/H2AK119ub1 and evolutionarily young retrotransposons for H3K4me3. We identify 145 large autosomal blocks (≥100 kb) with differential H3K9me3 enrichment, many of which are lamina-associated domains (LADs) in somatic but not in embryonic stem cells. A majority of these epigenomic heterogeneities are independent of genetic variations. We identify an X chromosome state with chromosome-wide H3K9me3 that stably prevents X chromosome erosion. Importantly, the germline potential of female hiPSCs correlates with X chromosome inactivation. We propose that inherent genomic properties, including CpG density, transposons, and LADs, engender epigenomic heterogeneity in hiPSCs.


Asunto(s)
Cromosomas Humanos X , Epigénesis Genética , Epigenoma , Heterogeneidad Genética , Histonas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Inactivación del Cromosoma X , Diferenciación Celular , Línea Celular , Ensamble y Desensamble de Cromatina , Islas de CpG , Elementos Transponibles de ADN , Epigenómica , Evolución Molecular , Humanos , Metilación , Lámina Nuclear/genética , Lámina Nuclear/metabolismo , Procesamiento Proteico-Postraduccional , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
9.
Nature ; 430(6999): 573-8, 2004 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-15229615

RESUMEN

Sister chromatids, the products of eukaryotic DNA replication, are held together by the chromosomal cohesin complex after their synthesis. This allows the spindle in mitosis to recognize pairs of replication products for segregation into opposite directions. Cohesin forms large protein rings that may bind DNA strands by encircling them, but the characterization of cohesin binding to chromosomes in vivo has remained vague. We have performed high resolution analysis of cohesin association along budding yeast chromosomes III-VI. Cohesin localizes almost exclusively between genes that are transcribed in converging directions. We find that active transcription positions cohesin at these sites, not the underlying DNA sequence. Cohesin is initially loaded onto chromosomes at separate places, marked by the Scc2/Scc4 cohesin loading complex, from where it appears to slide to its more permanent locations. But even after sister chromatid cohesion is established, changes in transcription lead to repositioning of cohesin. Thus the sites of cohesin binding and therefore probably sister chromatid cohesion, a key architectural feature of mitotic chromosomes, display surprising flexibility. Cohesin localization to places of convergent transcription is conserved in fission yeast, suggesting that it is a common feature of eukaryotic chromosomes.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Transcripción Genética , Proteínas de Ciclo Celular , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Cromosomas Fúngicos/genética , Secuencia Conservada/genética , ADN Intergénico/genética , ADN Intergénico/metabolismo , Proteínas Fúngicas , Genes Fúngicos/genética , Unión Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Cohesinas
10.
Nat Protoc ; 15(4): 1560-1583, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32231324

RESUMEN

The human germ-cell lineage originates as human primordial germ cells (hPGCs). hPGCs undergo genome-wide epigenetic reprogramming and differentiate into oogonia or gonocytes, precursors for oocytes or spermatogonia, respectively. Here, we describe a protocol to differentiate human induced pluripotent stem cells (hiPSCs) into oogonia in vitro. hiPSCs are induced into incipient mesoderm-like cells (iMeLCs) using activin A and a WNT pathway agonist. iMeLCs, or, alternatively, hPSCs cultured with divergent signaling inhibitors, are induced into hPGC-like cells (hPGCLCs) in floating aggregates by cytokines including bone morphogenic protein 4. hPGCLCs are aggregated with mouse embryonic ovarian somatic cells to form xenogeneic reconstituted ovaries, which are cultured under an air-liquid interface condition for ~4 months for hPGCLCs to differentiate into oogonia and immediate precursory states for oocytes. To date, this is the only approach that generates oogonia from hPGCLCs. The protocol is suitable for investigating the mechanisms of hPGC specification and epigenetic reprogramming.


Asunto(s)
Diferenciación Celular/fisiología , Técnicas Citológicas/métodos , Células Madre Pluripotentes Inducidas/citología , Oogonios/citología , Animales , Células Cultivadas , Femenino , Células Germinativas/citología , Humanos , Mesodermo/citología , Ratones
11.
Science ; 362(6412): 356-360, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30237246

RESUMEN

Human in vitro gametogenesis may transform reproductive medicine. Human pluripotent stem cells (hPSCs) have been induced into primordial germ cell-like cells (hPGCLCs); however, further differentiation to a mature germ cell has not been achieved. Here, we show that hPGCLCs differentiate progressively into oogonia-like cells during a long-term in vitro culture (approximately 4 months) in xenogeneic reconstituted ovaries with mouse embryonic ovarian somatic cells. The hPGCLC-derived oogonia display hallmarks of epigenetic reprogramming-genome-wide DNA demethylation, imprint erasure, and extinguishment of aberrant DNA methylation in hPSCs-and acquire an immediate precursory state for meiotic recombination. Furthermore, the inactive X chromosome shows a progressive demethylation and reactivation, albeit partially. These findings establish the germline competence of hPSCs and provide a critical step toward human in vitro gametogenesis.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Células Madre Pluripotentes Inducidas/citología , Oogénesis , Oogonios/citología , Ovario/crecimiento & desarrollo , Metilación de ADN , Epigénesis Genética , Femenino , Humanos
12.
Mol Cell Biol ; 23(11): 3965-73, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12748297

RESUMEN

During mitosis, sister kinetochores attach to microtubules that extend to opposite spindle poles (bipolar attachment) and pull the chromatids apart at anaphase (equational segregation). A multisubunit complex called cohesin, including Rad21/Scc1, plays a crucial role in sister chromatid cohesion and equational segregation at mitosis. Meiosis I differs from mitosis in having a reductional pattern of chromosome segregation, in which sister kinetochores are attached to the same spindle (monopolar attachment). During meiosis, Rad21/Scc1 is largely replaced by its meiotic counterpart, Rec8. If Rec8 is inactivated in fission yeast, meiosis I is shifted from reductional to equational division. However, the reason rec8Delta cells undergo equational rather than random division has not been clarified; therefore, it has been unclear whether equational segregation is due to a loss of cohesin in general or to a loss of a specific requirement for Rec8. We report here that the equational segregation at meiosis I depends on substitutive Rad21, which relocates to the centromeres if Rec8 is absent. Moreover, we demonstrate that even if sufficient amounts of Rad21 are transferred to the centromeres at meiosis I, thereby establishing cohesion at the centromeres, rec8Delta cells never recover monopolar attachment but instead secure bipolar attachment. Thus, Rec8 and Rad21 define monopolar and bipolar attachment, respectively, at meiosis I. We conclude that cohesin is a crucial determinant of the attachment manner of kinetochores to the spindle microtubules at meiosis I in fission yeast.


Asunto(s)
Proteínas de Ciclo Celular , Cinetocoros/metabolismo , Meiosis/fisiología , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Schizosaccharomyces/fisiología , Huso Acromático/metabolismo , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Proteínas Fúngicas , Proteínas Nucleares/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Cohesinas
13.
Cell Stem Cell ; 21(4): 517-532.e5, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985527

RESUMEN

Germline specification underlies human reproduction and evolution, but it has proven difficult to study in humans since it occurs shortly after blastocyst implantation. This process can be modeled with human induced pluripotent stem cells (hiPSCs) by differentiating them into primordial germ cell-like cells (hPGCLCs) through an incipient mesoderm-like cell (iMeLC) state. Here, we elucidate the key transcription factors and their interactions with important signaling pathways in driving hPGCLC differentiation from iPSCs. Germline competence of iMeLCs is dictated by the duration and dosage of WNT signaling, which induces expression of EOMES to activate SOX17, a key driver of hPGCLC specification. Upon hPGCLC induction, BMP signaling activates TFAP2C in a SOX17-independent manner. SOX17 and TFAP2C then cooperatively instate an hPGCLC transcriptional program, including BLIMP1 expression. This specification program diverges from its mouse counterpart regarding key transcription factors and their hierarchies, and it provides a foundation for further study of human germ cell development.


Asunto(s)
Evolución Biológica , Linaje de la Célula , Células Germinativas/citología , Células Madre Pluripotentes/citología , Transducción de Señal/genética , Transcripción Genética , Animales , Linaje de la Célula/genética , Implantación del Embrión/genética , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Modelos Biológicos , Células Madre Pluripotentes/metabolismo , Primates , Factores de Transcripción/metabolismo , Transcriptoma/genética , Vía de Señalización Wnt/genética
14.
Cell Stem Cell ; 17(2): 178-94, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26189426

RESUMEN

Mechanisms underlying human germ cell development are unclear, partly due to difficulties in studying human embryos and lack of suitable experimental systems. Here, we show that human induced pluripotent stem cells (hiPSCs) differentiate into incipient mesoderm-like cells (iMeLCs), which robustly generate human primordial germ cell-like cells (hPGCLCs) that can be purified using the surface markers EpCAM and INTEGRINα6. The transcriptomes of hPGCLCs and primordial germ cells (PGCs) isolated from non-human primates are similar, and although specification of hPGCLCs and mouse PGCs rely on similar signaling pathways, hPGCLC specification transcriptionally activates germline fate without transiently inducing eminent somatic programs. This includes genes important for naive pluripotency and repression of key epigenetic modifiers, concomitant with epigenetic reprogramming. Accordingly, BLIMP1, which represses somatic programs in mice, activates and stabilizes a germline transcriptional circuit and represses a default neuronal differentiation program. Together, these findings provide a foundation for understanding and reconstituting human germ cell development in vitro.


Asunto(s)
Linaje de la Célula , Células Germinativas/citología , Células Germinativas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Animales , Secuencia de Bases , Biomarcadores/metabolismo , Diferenciación Celular , Epigénesis Genética , Genes Reporteros , Gónadas/citología , Humanos , Macaca fascicularis , Mesodermo/citología , Ratones , Datos de Secuencia Molecular , Neuronas/citología , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Proteínas Represoras/metabolismo , Transducción de Señal , Transcripción Genética
15.
Dev Cell ; 15(5): 668-79, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18848501

RESUMEN

Genomic imprinting regulates parental-specific expression of particular genes and is required for normal mammalian development. How imprinting is established during development is, however, largely unknown. To address this question, we studied the mouse Kcnq1 imprinted cluster at which paternal-specific silencing depends on expression of the noncoding RNA Kcnq1ot1. We show that Kcnq1ot1 is expressed from the zygote stage onward and rapidly associates with chromatin marked by Polycomb group (PcG) proteins and repressive histone modifications, forming a discrete repressive nuclear compartment devoid of RNA polymerase II, a configuration also observed at the Igf2r imprinted cluster. In this compartment, the paternal Kcnq1 cluster exists in a three-dimensionally contracted state. In vivo the PcG proteins Ezh2 and Rnf2 are independently required for genomic contraction and imprinted silencing. We propose that the formation of a parental-specific higher-order chromatin organization renders imprint clusters competent for monoallelic silencing and assign a central role to PcG proteins in this process.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/metabolismo , Impresión Genómica , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas Represoras/metabolismo , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Masculino , Ratones , Complejo Represivo Polycomb 1 , Complejo Represivo Polycomb 2 , ARN Largo no Codificante , ARN no Traducido/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
16.
Cell ; 123(5): 803-17, 2005 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-16325576

RESUMEN

Meiosis resembles mitosis but employs a unique "reductional" nuclear division to allow the production of haploid gametes from diploid cells. The crucial ploidy reduction step requires that sister kinetochores attach to microtubules emanating from the same spindle pole, achieving "monopolar attachment," which ensures that maternal and paternal chromosomes are segregated. Here we screened for factors required to establish monopolar attachment in fission yeast and identified a novel protein, Moa1. Moa1 is meiosis specific and localizes exclusively to the central core of the centromere, a region that binds meiotic Rec8-containing cohesin complexes but not mitotic Rad21/Scc1-containing complexes. Enforced cleavage of Rec8 in the central core region led to the disruption of monopolar attachment, as in moa1Delta cells, without diminishing Moa1 localization. Moa1 physically interacts with Rec8, implying that Moa1 functions only through Rec8, presumably to facilitate central core cohesion. These results prove that monoorientation of kinetochores is established in a cohesion-mediated manner.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Meiosis/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Microtúbulos/metabolismo , Complejos Multiproteicos , Fenotipo , Fosfoproteínas/metabolismo , Recombinación Genética , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
17.
Science ; 300(5622): 1152-5, 2003 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-12750522

RESUMEN

Meiotic cohesin complexes at centromeres behave differently from those along chromosome arms, but the basis for these differences has remained elusive. The fission yeast cohesin molecule Rec8 largely replaces its mitotic counterpart, Rad21/Scc1, along the entire chromosome during meiosis. Here we show that Rec8 complexes along chromosome arms contain Rec11, whereas those in the vicinity of centromeres have a different partner subunit, Psc3. The arm associated Rec8-Rec11 complexes are critical for meiotic recombination. The Rec8-Psc3 complexes comprise two different types of assemblies. First, pericentromeric Rec8-Psc3 complexes depend on histone methylation-directed heterochromatin for their localization and are required for cohesion during meiosis II. Second, central core Rec8-Psc3 complexes form independently of heterochromatin and are presumably required for establishing monopolar attachment at meiosis I. These findings define distinct modes of assembly and functions for cohesin complexes at different regions along chromosomes.


Asunto(s)
Cromátides/fisiología , Segregación Cromosómica , Cromosomas Fúngicos/fisiología , Meiosis/fisiología , Fosfoproteínas/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , División Celular , Centrómero/fisiología , Cromatina , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética
18.
J Cell Sci ; 117(Pt 16): 3547-59, 2004 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15226378

RESUMEN

Cohesion between sister chromatids mediated by a multisubunit complex called cohesin is established during DNA replication and is essential for the orderly segregation of chromatids during anaphase. In budding yeast, a specialized replication factor C called RF-C(Ctf18/Dcc1/Ctf8) and the DNA-polymerase-alpha-associated protein Ctf4 are required to maintain sister-chromatid cohesion in cells arrested for long periods in mitosis. We show here that CTF8, CTF4 and a helicase encoded by CHL1 are required for efficient sister chromatid cohesion in unperturbed mitotic cells, and provide evidence that Chl1 functions during S-phase. We also show that, in contrast to mitosis, RF-C(Ctf18/Dcc1/Cft8), Ctf4 and Chl1 are essential for chromosome segregation during meiosis and for the viability of meiotic products. Our finding that cells deleted for CTF8, CTF4 or CHL1 undergo massive meiosis II non-disjunction suggests that the second meiotic division is particularly sensitive to cohesion defects. Using a functional as well as a cytological assay, we demonstrate that CTF8, CHL1 and CTF4 are essential for cohesion between sister centromeres during meiosis but dispensable for cohesin's association with centromeric DNA. Our finding that mutants in fission yeast ctf18 and dcc1 have similar defects suggests that the involvement of the alternative RF-C(Ctf18/Dcc1/Ctf8) complex in sister chromatid cohesion might be highly conserved.


Asunto(s)
Cromátides , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Unión al ADN/fisiología , Meiosis , Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Citometría de Flujo , Proteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA