Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Biol Chem ; 298(5): 101844, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35307347

RESUMEN

Eukaryotic mRNAs possess a poly(A) tail at their 3'-end, to which poly(A)-binding protein C1 (PABPC1) binds and recruits other proteins that regulate translation. Enhanced poly(A)-dependent translation, which is also PABPC1 dependent, promotes cellular and viral proliferation. PABP-interacting protein 2A (Paip2A) effectively represses poly(A)-dependent translation by causing the dissociation of PABPC1 from the poly(A) tail; however, the underlying mechanism remains unknown. This study was conducted to investigate the functional mechanisms of Paip2A action by characterizing the PABPC1-poly(A) and PABPC1-Paip2A interactions. Isothermal titration calorimetry and NMR analyses indicated that both interactions predominantly occurred at the RNA recognition motif (RRM)2-RRM3 regions of PABPC1, which have comparable affinities for poly(A) and Paip2A (dissociation constant, Kd = 1 nM). However, the Kd values of isolated RRM2 were 200 and 4 µM in their interactions with poly(A) and Paip2A, respectively; Kd values of 5 and 1 µM were observed for the interactions of isolated RRM3 with poly(A) and Paip2A, respectively. NMR analyses also revealed that Paip2A can bind to the poly(A)-binding interfaces of the RRM2 and RRM3 regions of PABPC1. Based on these results, we propose the following functional mechanism for Paip2A: Paip2A initially binds to the RRM2 region of poly(A)-bound PABPC1, and RRM2-anchored Paip2A effectively displaces the RRM3 region from poly(A), resulting in dissociation of the whole PABPC1 molecule. Together, our findings provide insight into the translation repression effect of Paip2A and may aid in the development of novel anticancer and/or antiviral drugs.


Asunto(s)
Poli A , Proteínas de Unión a Poli(A) , Biosíntesis de Proteínas , Motivo de Reconocimiento de ARN , Poli A/metabolismo , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Handb Exp Pharmacol ; 267: 481-505, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34117930

RESUMEN

A number of peptide toxins isolated from animals target potassium ion (K+) channels. Many of them are particularly known to inhibit voltage-gated K+ (KV) channels and are mainly classified into pore-blocking toxins or gating-modifier toxins. Pore-blocking toxins directly bind to the ion permeation pores of KV channels, thereby physically occluding them. In contrast, gating-modifier toxins bind to the voltage-sensor domains of KV channels, modulating their voltage-dependent conformational changes. These peptide toxins are useful molecular tools in revealing the structure-function relationship of KV channels and have potential for novel treatments for diseases related to KV channels. This review focuses on the inhibition mechanism of pore-blocking and gating-modifier toxins that target KV channels.


Asunto(s)
Activación del Canal Iónico , Toxinas Biológicas , Animales , Péptidos
3.
Proc Natl Acad Sci U S A ; 115(15): 3858-3863, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581303

RESUMEN

Ethanol consumption leads to a wide range of pharmacological effects by acting on the signaling proteins in the human nervous system, such as ion channels. Despite its familiarity and biological importance, very little is known about the molecular mechanisms underlying the ethanol action, due to extremely weak binding affinity and the dynamic nature of the ethanol interaction. In this research, we focused on the primary in vivo target of ethanol, G-protein-activated inwardly rectifying potassium channel (GIRK), which is responsible for the ethanol-induced analgesia. By utilizing solution NMR spectroscopy, we characterized the changes in the structure and dynamics of GIRK induced by ethanol binding. We demonstrated here that ethanol binds to GIRK with an apparent dissociation constant of 1.0 M and that the actual physiological binding site of ethanol is located on the cavity formed between the neighboring cytoplasmic regions of the GIRK tetramer. From the methyl-based NMR relaxation analyses, we revealed that ethanol activates GIRK by shifting the conformational equilibrium processes, which are responsible for the gating of GIRK, to stabilize an open conformation of the cytoplasmic ion gate. We suggest that the dynamic molecular mechanism of the ethanol-induced activation of GIRK represents a general model of the ethanol action on signaling proteins in the human nervous system.


Asunto(s)
Etanol/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Etanol/química , Cinética , Espectroscopía de Resonancia Magnética , Ratones , Conformación Proteica , Dominios Proteicos
4.
Chem Pharm Bull (Tokyo) ; 67(4): 321-326, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30930435

RESUMEN

The structures of many membrane proteins have been analyzed in detergent micelles. However, the environment of detergent micelles differs somewhat from that of the lipid bilayer, where membrane proteins exhibit physiological functions. Therefore, a more membrane-like environment has been awaited for structural analysis of membrane proteins. Nanodiscs are "hockey-puck"-shaped lipid bilayer particles that distribute in a monodispersed manner in aqueous solution. We review how nanodiscs or protein-reconstituted nanodiscs are prepared and how they are utilized to analyze protein structure, dynamics, and interactions with lipid molecules using solution NMR and cryo-electron microscopy.


Asunto(s)
Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Nanoestructuras/química , Microscopía por Crioelectrón , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Micelas , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
5.
Genes Cells ; 21(4): 350-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26864631

RESUMEN

Tyrosine kinases are key enzymes that play critical roles in growth signaling, the abnormal activation of which is associated with various human cancers. Activation of tyrosine kinases is mediated by tyrosine phosphorylation in the activation-loop, which transforms the catalytic domain to the active state conformation. Cancer mutations are supposed to transform the conformation of the catalytic domain into the active-form independent of the phosphorylation state of the activation-loop. Here, we report structural and biophysical analyses of cancer mutations of the tyrosine kinase domain of fibroblast growth factor receptor 1 (FGFR1). Based on the nuclear magnetic resonance analyses, phosphorylation of the activation-loop exhibited cooperative structural transition in the activation-loop, C-helix and P-loop regions, whereas cancer mutations induced structural transformation at either one or two of these regions.


Asunto(s)
Mutación , Neoplasias/genética , Resonancia Magnética Nuclear Biomolecular , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Humanos , Modelos Moleculares , Neoplasias/metabolismo , Fosforilación , Conformación Proteica , Dominios Proteicos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/aislamiento & purificación , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo
6.
J Am Chem Soc ; 138(7): 2302-11, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26855064

RESUMEN

Chemical exchange processes of proteins on the order of microseconds (µs) to milliseconds (ms) play critical roles in biological functions. Developments in methyl-transverse relaxation optimized spectroscopy (methyl-TROSY), which observes the slowly relaxing multiple quantum (MQ) coherences, have enabled the studies of biologically important large proteins. However, the analyses of µs to ms chemical exchange processes based on the methyl-TROSY principle are still challenging, because the interpretation of the chemical exchange contributions to the MQ relaxation profiles is complicated, as significant chemical shift differences occur in both (1)H and (13)C nuclei. Here, we report a new methyl-based NMR method for characterizing chemical exchanges, utilizing differential MQ relaxation rates and a heteronuclear double resonance pulse technique. The method enables quantitative evaluations of the chemical exchange processes, in which significant chemical shift differences exist in both the (1)H and (13)C nuclei. The versatility of the method is demonstrated with the application to KirBac1.1, with an apparent molecular mass of 200 kDa.


Asunto(s)
Proteínas de Unión a Maltosa/química , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular , Teoría Cuántica , Modelos Moleculares , Peso Molecular , Factores de Tiempo
7.
Genes Cells ; 20(10): 860-70, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26300540

RESUMEN

Receptor and nonreceptor tyrosine kinases are enzymes that play important roles in regulating signal transduction pathways in a variety of normal cellular process and in many pathological conditions. Ordered phosphorylation is required for receptor tyrosine kinase (RTK) activation, a process mediated by transient dimer formation of the kinase domains. This process is triggered by the tyrosine phosphorylation in the activation loop. Here, we report structural and biochemical analyses of the tyrosine kinase domain interaction of fibroblast growth factor receptor 1 (FGFR1) required for the initial phosphorylation step. On the basis of nuclear magnetic resonance (NMR) analysis and covalent cross-linking experiments, we propose a parallel symmetric dimer model where specific contacts are formed between the N-lobes and C-lobes, respectively, in the FGFR1 kinase domains. Moreover, assignment of the contact sites between two FGFR1 kinase domains are supported by a trans-phosphorylation assay and by mutational analyses. The present report shows the molecular mechanism underlying the control of trans-phosphorylation of a critical auto-regulatory site in FGF receptors' catalytic domain.


Asunto(s)
Homeostasis , Fosforilación , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Tirosina/metabolismo , Humanos , Imagen por Resonancia Magnética , Simulación del Acoplamiento Molecular , Mutación , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química
8.
Sci Adv ; 10(22): eadl0320, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820160

RESUMEN

Translation of mRNAs is a fundamental process that occurs in all cell types of multicellular organisms. Conventionally, it has been considered a default step in gene expression, lacking specific regulation. However, recent studies have documented that certain mRNAs exhibit cell type-specific translation. Despite this, it remains unclear whether global translation is controlled in a cell type-specific manner. By using human cell lines and mouse models, we found that deletion of the ribosome-associated protein ribonuclease inhibitor 1 (RNH1) decreases global translation selectively in hematopoietic-origin cells but not in the non-hematopoietic-origin cells. RNH1-mediated cell type-specific translation is mechanistically linked to angiogenin-induced ribosomal biogenesis. Collectively, this study unravels the existence of cell type-specific global translation regulators and highlights the complex translation regulation in vertebrates.


Asunto(s)
Biosíntesis de Proteínas , Ribonucleasa Pancreática , Ribosomas , Ribonucleasa Pancreática/metabolismo , Ribonucleasa Pancreática/genética , Humanos , Animales , Ratones , Ribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación de la Expresión Génica , Línea Celular , Especificidad de Órganos , Proteínas Portadoras
9.
J Biol Chem ; 287(23): 19537-49, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22511772

RESUMEN

G protein-gated inwardly rectifying potassium channel (GIRK) plays a crucial role in regulating heart rate and neuronal excitability. The gating of GIRK is regulated by the association and dissociation of G protein ßγ subunits (Gßγ), which are released from pertussis toxin-sensitive G protein α subunit (Gα(i/o)) upon GPCR activation in vivo. Several lines of evidence indicate that Gα(i/o) also interacts directly with GIRK, playing functional roles in the signaling efficiency and the modulation of the channel activity. However, the underlying mechanism for GIRK regulation by Gα(i/o) remains to be elucidated. Here, we performed NMR analyses of the interaction between the cytoplasmic region of GIRK1 and Gα(i3) in the GTP-bound state. The NMR spectral changes of Gα upon the addition of GIRK as well as the transferred cross-saturation (TCS) results indicated their direct binding mode, where the K(d) value was estimated as ∼1 mm. The TCS experiments identified the direct binding sites on Gα and GIRK as the α2/α3 helices on the GTPase domain of Gα and the αA helix of GIRK. In addition, the TCS and paramagnetic relaxation enhancement results suggested that the helical domain of Gα transiently interacts with the αA helix of GIRK. Based on these results, we built a docking model of Gα and GIRK, suggesting the molecular basis for efficient GIRK deactivation by Gα(i/o).


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Modelos Moleculares , Animales , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Ratones , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
10.
J Biol Chem ; 287(42): 34936-34945, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22915584

RESUMEN

Phosphoinositides (PIs) are crucial lipid components of membranes and are involved in a number of cellular processes through interactions with their effector proteins. Recently, we have established a lipid-protein nanoscale bilayer (nanodisc) containing PIs, hereafter referred to as PI-nanodisc and demonstrated that it could be used for both qualitative and quantitative evaluations of protein-membrane interactions. Here, we report further NMR analyses for obtaining structural insights at the residue-specific level between PI-binding effector protein and PI-nanodisc, using the FYVE domain of early endosome antigen 1 (EEA1), denoted as EEA1 FYVE, and PI(3)P-nanodisc as a model system. We performed a combination of the NMR analyses including chemical shift perturbation, transferred cross-saturation, and paramagnetic relaxation enhancement experiments. These enabled an identification of the interaction surface, structural change, and relative orientation of EEA1 FYVE to the PI(3)P-incorporated lipid bilayer, substantiating that NMR analyses of protein-membrane interactions using nanodisc makes it possible to show the residue-specific interactions in the lipid bilayer environment.


Asunto(s)
Membrana Dobles de Lípidos/química , Nanoestructuras/química , Fosfatidilinositoles/química , Proteínas de Transporte Vesicular/química , Humanos , Resonancia Magnética Nuclear Biomolecular , Fosfatidilinositoles/metabolismo , Estructura Terciaria de Proteína , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
11.
Chem Commun (Camb) ; 59(44): 6722-6725, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37191131

RESUMEN

We combined a library of medium-sized molecules with iterative screening using multiple machine learning algorithms that were ligand-based, which resulted in a large increase of the hit rate against a protein-protein interaction target. This was demonstrated by inhibition assays using a PPI target, Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2), and a deep neural network model based on the first-round assay data showed a highest hit rate of 27.3%. Using the models, we identified novel active and non-flat compounds far from public datasets, expanding the chemical space.


Asunto(s)
Aprendizaje Profundo , Proteína 1 Asociada A ECH Tipo Kelch/química , Factor 2 Relacionado con NF-E2/química , Factor 2 Relacionado con NF-E2/metabolismo , Descubrimiento de Drogas/métodos , Unión Proteica
12.
FEBS Lett ; 597(12): 1667-1676, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37177801

RESUMEN

Aggregation of the 43 kDa TAR DNA-binding protein (TDP-43) is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). RNA binding and TDP-43 N-terminal domain dimerisation has been suggested to ameliorate TDP-43 aggregation. However, the relationship between these factors and the solubility of TDP-43 is largely unknown. Therefore, we developed new oligonucleotides that can recruit two TDP-43 molecules and interfere with their intermolecular interactions via spatial separation. Using these oligonucleotides and TDP-43-preferable UG-repeats, we uncovered two distinct mechanisms for modulating TDP-43 solubility by RNA binding: One is N-terminal domain dimerisation, and the other is the spatial separation of two TDP-43 molecules. This study provides new molecular insights into the regulation of TDP-43 solubility.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Humanos , Proteínas de Unión al ADN/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Cuerpos de Inclusión/metabolismo , ARN/genética , ARN/metabolismo
13.
J Biol Chem ; 286(3): 2215-23, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21075842

RESUMEN

G protein-activated inwardly rectifying potassium channel (GIRK) plays crucial roles in regulating heart rate and neuronal excitability in eukaryotic cells. GIRK is activated by the direct binding of heterotrimeric G protein ßγ subunits (Gßγ) upon stimulation of G protein-coupled receptors, such as M2 acetylcholine receptor. The binding of Gßγ to the cytoplasmic pore (CP) region of GIRK causes structural rearrangements, which are assumed to open the transmembrane ion gate. However, the crucial residues involved in the Gßγ binding and the structural mechanism of GIRK gating have not been fully elucidated. Here, we have characterized the interaction between the CP region of GIRK and Gßγ, by ITC and NMR. The ITC analyses indicated that four Gßγ molecules bind to a tetramer of the CP region of GIRK with a dissociation constant of 250 µM. The NMR analyses revealed that the Gßγ binding site spans two neighboring subunits of the GIRK tetramer, which causes conformational rearrangements between subunits. A possible binding mode and mechanism of GIRK gating are proposed.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Activación del Canal Iónico/fisiología , Modelos Biológicos , Animales , Sitios de Unión , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/genética , Humanos , Ratones , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína
14.
BMC Mol Cell Biol ; 22(1): 3, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413079

RESUMEN

BACKGROUND: Human ether-à-go-go-related gene potassium channel 1 (hERG) is a voltage-gated potassium channel, the voltage-sensing domain (VSD) of which is targeted by a gating-modifier toxin, APETx1. APETx1 is a 42-residue peptide toxin of sea anemone Anthopleura elegantissima and inhibits hERG by stabilizing the resting state. A previous study that conducted cysteine-scanning analysis of hERG identified two residues in the S3-S4 region of the VSD that play important roles in hERG inhibition by APETx1. However, mutational analysis of APETx1 could not be conducted as only natural resources have been available until now. Therefore, it remains unclear where and how APETx1 interacts with the VSD in the resting state. RESULTS: We established a method for preparing recombinant APETx1 and determined the NMR structure of the recombinant APETx1, which is structurally equivalent to the natural product. Electrophysiological analyses using wild type and mutants of APETx1 and hERG revealed that their hydrophobic residues, F15, Y32, F33, and L34, in APETx1, and F508 and I521 in hERG, in addition to a previously reported acidic hERG residue, E518, play key roles in the inhibition of hERG by APETx1. Our hypothetical docking models of the APETx1-VSD complex satisfied the results of mutational analysis. CONCLUSIONS: The present study identified the key residues of APETx1 and hERG that are involved in hERG inhibition by APETx1. These results would help advance understanding of the inhibitory mechanism of APETx1, which could provide a structural basis for designing novel ligands targeting the VSDs of KV channels.


Asunto(s)
Venenos de Cnidarios/toxicidad , Canal de Potasio ERG1/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Venenos de Cnidarios/química , Venenos de Cnidarios/genética , Análisis Mutacional de ADN , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulación del Acoplamiento Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Proteínas Recombinantes/toxicidad , Soluciones , Xenopus laevis
15.
J Biol Chem ; 284(38): 26117-26, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19620244

RESUMEN

The inwardly rectifying potassium channel (Kir) regulates resting membrane potential, K+ homeostasis, heart rate, and hormone secretion. The outward current is blocked in a voltage-dependent manner, upon the binding of intracellular polyamines or Mg2+ to the transmembrane pore domain. Meanwhile, electrophysiological studies have shown that mutations of several acidic residues in the intracellular regions affected the inward rectification. Although these acidic residues are assumed to bind polyamines, the functional role of the binding of polyamines and Mg2+ to the intracellular regions of Kirs remains unclear. Here, we report thermodynamic and structural studies of the interaction between polyamines and the cytoplasmic pore of mouse Kir3.1/GIRK1, which is gated by binding of G-protein betagamma-subunit (Gbetagamma). ITC analyses showed that two spermine molecules bind to a tetramer of Kir3.1/GIRK1 with a dissociation constant of 26 microM, which is lower than other blockers. NMR analyses revealed that the spermine binding site is Asp-260 and its surrounding area. Small but significant chemical shift perturbations upon spermine binding were observed in the subunit-subunit interface of the tetramer, suggesting that spermine binding alters the relative orientations of the four subunits. Our ITC and NMR results postulated a spermine binding mode, where one spermine molecule bridges two Asp-260 side chains from adjacent subunits, with rearrangement of the subunit orientations. This suggests the functional roles of spermine binding to the cytoplasmic pore: stabilization of the resting state conformation of the channel, and instant translocation to the transmembrane pore upon activation through the Gbetagamma-induced conformational rearrangement.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Espermina/química , Animales , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Magnesio/química , Magnesio/metabolismo , Ratones , Resonancia Magnética Nuclear Biomolecular/métodos , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/metabolismo , Unión Proteica/fisiología , Estructura Cuaternaria de Proteína/fisiología , Estructura Terciaria de Proteína/fisiología , Espermina/metabolismo
16.
J Am Chem Soc ; 132(19): 6768-77, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20423099

RESUMEN

CC-chemokine receptor 5 (CCR5) belongs to the G protein-coupled receptor (GPCR) family and plays important roles in the inflammatory response. In addition, its ligands inhibit the HIV infection. Structural analyses of CCR5 have been hampered by its instability in the detergent-solubilized form. Here, CCR5 was reconstituted into high density lipoprotein (rHDL), which enabled CCR5 to maintain its functions for >24 h and to be suitable for structural analyses. By applying the methyl-directed transferred cross-saturation (TCS) method to the complex between rHDL-reconstituted CCR5 and its ligand MIP-1alpha, we demonstrated that valine 59 and valine 63 of MIP-1alpha are in close proximity to CCR5 in the complex. Furthermore, these results suggest that the protective influence on HIV-1 infection of a SNP of MIP-1alpha is due to its change of affinity for CCR5. This method will be useful for investigating the various and complex signaling mediated by GPCR, and will also provide structural information about the interactions of other GPCRs with lipids, ligands, G-proteins, and effector molecules.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Receptores CCR5/química , Receptores CCR5/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Quimiocina CCL3/química , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Variación Genética , Humanos , Ligandos , Membrana Dobles de Lípidos/química , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Maltosa/análogos & derivados , Maltosa/química , Micelas , Modelos Moleculares , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Soluciones
17.
Nat Commun ; 10(1): 2008, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31043612

RESUMEN

G protein-gated inwardly rectifying potassium channel (GIRK) plays a key role in regulating neurotransmission. GIRK is opened by the direct binding of the G protein ßγ subunit (Gßγ), which is released from the heterotrimeric G protein (Gαßγ) upon the activation of G protein-coupled receptors (GPCRs). GIRK contributes to precise cellular responses by specifically and efficiently responding to the Gi/o-coupled GPCRs. However, the detailed mechanisms underlying this family-specific and efficient activation are largely unknown. Here, we investigate the structural mechanism underlying the Gi/o family-specific activation of GIRK, by combining cell-based BRET experiments and NMR analyses in a reconstituted membrane environment. We show that the interaction formed by the αA helix of Gαi/o mediates the formation of the Gαi/oßγ-GIRK complex, which is responsible for the family-specific activation of GIRK. We also present a model structure of the Gαi/oßγ-GIRK complex, which provides the molecular basis underlying the specific and efficient regulation of GIRK.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/ultraestructura , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/ultraestructura , Subunidades beta de la Proteína de Unión al GTP/ultraestructura , Subunidades gamma de la Proteína de Unión al GTP/ultraestructura , Activación del Canal Iónico/fisiología , Transferencia de Energía por Resonancia de Bioluminiscencia , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/aislamiento & purificación , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades beta de la Proteína de Unión al GTP/aislamiento & purificación , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/aislamiento & purificación , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura
18.
Methods Mol Biol ; 1684: 115-128, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29058188

RESUMEN

The gating of potassium ion (K+) channels is regulated by various kinds of protein-protein interactions (PPIs). Structural investigations of these PPIs provide useful information not only for understanding the gating mechanisms of K+ channels, but also for developing the pharmaceutical compounds targeting K+ channels. Here, we describe a nuclear magnetic resonance spectroscopic method, termed the cross saturation (CS) method, to accurately determine the binding surfaces of protein complexes, and its application to the investigation of the interaction between a G protein-coupled inwardly rectifying K+ channel and a G protein α subunit.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/química , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Animales , Sitios de Unión , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas
19.
Sci Rep ; 8(1): 1455, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29362417

RESUMEN

Eukaryotic mature mRNAs possess a poly adenylate tail (poly(A)), to which multiple molecules of poly(A)-binding protein C1 (PABPC1) bind. PABPC1 regulates translation and mRNA metabolism by binding to regulatory proteins. To understand functional mechanism of the regulatory proteins, it is necessary to reveal how multiple molecules of PABPC1 exist on poly(A). Here, we characterize the structure of the multiple molecules of PABPC1 on poly(A), by using transmission electron microscopy (TEM), chemical cross-linking, and NMR spectroscopy. The TEM images and chemical cross-linking results indicate that multiple PABPC1 molecules form a wormlike structure in the PABPC1-poly(A) complex, in which the PABPC1 molecules are linearly arrayed. NMR and cross-linking analyses indicate that PABPC1 forms a multimer by binding to the neighbouring PABPC1 molecules via interactions between the RNA recognition motif (RRM) 2 in one molecule and the middle portion of the linker region of another molecule. A PABPC1 mutant lacking the interaction site in the linker, which possesses an impaired ability to form the multimer, reduced the in vitro translation activity, suggesting the importance of PABPC1 multimer formation in the translation process. We therefore propose a model of the PABPC1 multimer that provides clues to comprehensively understand the regulation mechanism of mRNA translation.


Asunto(s)
Poli A/metabolismo , Proteína I de Unión a Poli(A)/química , Proteína I de Unión a Poli(A)/metabolismo , Sitios de Unión , Humanos , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Transmisión , Mutación , Proteína I de Unión a Poli(A)/genética , Unión Proteica , Multimerización de Proteína , ARN Mensajero/química , ARN Mensajero/metabolismo
20.
Nat Commun ; 8: 14523, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28223697

RESUMEN

Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Guanosina Difosfato/metabolismo , Campos Magnéticos , Espectroscopía de Resonancia Magnética , Subunidades alfa de la Proteína de Unión al GTP/química , Humanos , Magnesio/farmacología , Proteínas Mutantes/metabolismo , Péptidos/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA