Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Neurosci ; 22(1): 32, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33933000

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is characterized by the core symptoms of impaired social interactions. Increasing evidence suggests that ASD has a strong genetic link with mutations in chromodomain helicase DNA binding protein 8 (CHD8), a gene encoding a chromatin remodeler. It has previously been shown that Chd8 haplodeficient male mice manifest ASD-like behavioral characteristics such as anxiety and altered social behavior. Along with that, oxytocin (OT) is one of the main neuropeptides involved in social behavior. Administration of OT has shown improvement of social behavior in genetic animal models of ASD. The present study was undertaken to further explore behavioral abnormalities of Chd8 haplodeficient mice of both sexes, their link with OT, and possible effects of OT administration. First, we performed a battery of behavioral tests on wild-type and Chd8+/∆SL female and male mice. Next, we measured plasma OT levels and finally studied the effects of intraperitoneal OT injection on observed behavioral deficits. RESULTS: We showed general anxiety phenotype in Chd8+/∆SL mice regardless of sex, the depressive phenotype in Chd8+/∆SL female mice only and bidirectional social deficit in female and male mice. We observed decreased level of OT in Chd+/∆SL mice, possibly driven by males. Mice injected by OT demonstrated recovery of social behavior, while reduced anxiety was observed only in male mice. CONCLUSIONS: Here, we demonstrated that abnormal social behaviors were observed in both male and female Chd8+/∆SL mice. The ability of peripheral OT administration to affect such behaviors along with altered plasma OT levels indicated a possible link between Chd8 + /∆SL and OT in the pathogenesis of ASD as well as the possible usefulness of OT as a therapeutic tool for ASD patients with CHD8 mutations.


Asunto(s)
Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/genética , Proteínas de Unión al ADN/genética , Haploinsuficiencia/efectos de los fármacos , Oxitocina/uso terapéutico , Conducta Social , Animales , Trastorno Autístico/metabolismo , Proteínas de Unión al ADN/deficiencia , Femenino , Haploinsuficiencia/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Oxitocina/farmacología
2.
Horm Behav ; 120: 104695, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31987898

RESUMEN

In mammals, the development of healthy offspring requires maternal care. Behavior by lactating mothers toward other individuals is an important component of maternal aggression. However, it is unclear whether fathers display aggression primed by pups (an external factor), and the protection mechanism is poorly understood. To address this question, we examined paternal aggression in the ICR mouse strain. We found that sires exposed to cues from pups and lactating dams showed stronger aggression toward intruders than did sires that were deprived of family cues or exposed to nonlactating mates. c-Fos immunohistochemistry showed that cells in both the paraventricular and supraoptic nuclei (PVN and SON, respectively) in the hypothalamus of sires exposed to any cues were highly activated. However, c-Fos activation in oxytocinergic neurons was increased only in sires exposed to pup cues and solely in the PVN. In Cd38-knockout sires, the presence of pups induced no or reduced parental aggression; however, this phenotype was recovered, that is, aggression increased to the wild-type level, after intraperitoneal administration of oxytocin (OT). Specific c-Fos activation patterns induced by pup cues were not found in the PVN of knockout sires. These results demonstrate that the PVN is one of the primary hypothalamic areas involved in paternal aggression and suggest that a CD38-dependent OT mechanism in oxytocinergic neurons is critical for part of the behavior associated with the protection of offspring by nurturing male mice.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , ADP-Ribosil Ciclasa/metabolismo , Agresión/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Oxitocina/farmacología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Conducta Paterna/efectos de los fármacos , Animales , Animales Recién Nacidos , Padre/psicología , Femenino , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Comportamiento de Nidificación/efectos de los fármacos , Conducta Social
3.
Bioorg Med Chem ; 27(15): 3358-3363, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31229420

RESUMEN

In the course of our studies of hydrophobic oxytocin (OT) analogues, we newly synthesized lipidated OT (LOT-4a-c and LOT-5a-c), in which a long alkyl chain (C14-C16) is conjugated via a carbonate or carbamate linkage at the Tyr-2 phenolic hydroxy group and a palmitoyl group at the terminal amino group of Cys-1. These LOTs did not activate OT and vasopressin receptors. Among the LOTs, however, LOT-4c, having a C16-chain via a carbonate linkage at the phenolic hydroxyl group of the Tyr-2, showed very long-lasting action for the recovery of impaired social behavior in CD38 knockout mice, a rodent model of autistic phenotypes, whereas the effect of OT itself rapidly diminished. These results indicate that LOT-4c may serve as a potential prodrug in mice.


Asunto(s)
Carbamatos/farmacología , Carbonatos/farmacología , Oxitocina/farmacología , Conducta Paterna/efectos de los fármacos , Animales , Carbamatos/química , Carbonatos/química , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Estructura Molecular , Oxitocina/síntesis química , Oxitocina/química , Conducta Social , Relación Estructura-Actividad
4.
Glia ; 65(6): 974-989, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28295574

RESUMEN

Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP-ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain largely unknown. Here we demonstrate that deletion of Cd38 leads to impaired development of astrocytes and oligodendrocytes in mice. CD38 is highly expressed in the developing brains between postnatal day 14 (P14) and day 28 (P28). In situ hybridization and FACS analysis revealed that CD38 is expressed predominantly in astrocytes in these periods. Analyses of the cortex of Cd38 knockout (Cd38-/- ) mice revealed delayed development of astrocytes and subsequently delayed differentiation of oligodendrocytes (OLs) at postnatal stages. In vitro experiments using primary OL cultures, mixed glial cultures, and astrocytic conditioned medium showed that astrocytic CD38 regulates the development of astrocytes in a cell-autonomous manner and the differentiation of OLs in a non-cell-autonomous manner. Further experiments revealed that connexin43 (Cx43) in astrocytes plays a promotive role for CD38-mediated OL differentiation. Finally, increased levels of NAD+ , caused by CD38 deficiency, are likely to be responsible for the suppression of astrocytic Cx43 expression and OL differentiation. Our data indicate that CD38 is a positive regulator of astrocyte and OL development.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , ADP-Ribosil Ciclasa/metabolismo , Astrocitos/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Oligodendroglía/metabolismo , ADP-Ribosil Ciclasa/genética , ADP-Ribosil Ciclasa 1/genética , Animales , Astrocitos/citología , Encéfalo/citología , Diferenciación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Conexina 43/metabolismo , Femenino , Masculino , Glicoproteínas de Membrana/genética , Ratones Endogámicos ICR , Ratones Noqueados , NAD/metabolismo , Oligodendroglía/citología , Ratas Wistar
5.
BMC Neurosci ; 18(1): 35, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28340569

RESUMEN

BACKGROUND: Recent rodent and human studies provide evidence in support of the fact that CD157, well known as bone marrow stromal cell antigen-1 (BST-1) and a risk factor in Parkinson's disease, also meaningfully acts in the brain as a neuroregulator and affects social behaviors. It has been shown that social behaviors are impaired in CD157 knockout mice without severe motor dysfunction and that CD157/BST1 gene single nucleotide polymorphisms are associated with autism spectrum disorder in humans. However, it is still necessary to determine how this molecule contributes to the brain's physiological and pathophysiological functions. METHODS: To gain fresh insights about the relationship between the presence of CD157 in the brain and its enzymatic activity, and aberrant social behavior, CD157 knockout mice of various ages were tested. RESULTS: CD157 immunoreactivity colocalized with nestin-positive cells and elements in the ventricular zones in E17 embryos. Brain CD157 mRNA levels were high in neonates but low in adults. Weak but distinct immunoreactivity was detected in several areas in the adult brain, including the amygdala. CD157 has little or no base exchange activity, but some ADP-ribosyl cyclase activity, indicating that CD157 formed cyclic ADP-ribose but much less nicotinic acid adenine dinucleotide phosphate, with both mobilizing Ca2+ from intracellular Ca2+ pools. Social avoidance in CD157 knockout mice was rescued by a single intraperitoneal injection of oxytocin. CONCLUSIONS: CD157 may play a role in the embryonic and adult nervous systems. The functional features of CD157 can be explained in part through the production of cyclic ADP-ribose rather than nicotinic acid adenine dinucleotide phosphate. Further experiments are required to elucidate how the embryonic expression of CD157 in neural stem cells contributes to behaviors in adults or to psychiatric symptoms.


Asunto(s)
ADP-Ribosil Ciclasa/metabolismo , Antígenos CD/metabolismo , Encéfalo/enzimología , Conducta Social , ADP-Ribosil Ciclasa/genética , ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/metabolismo , Animales , Animales Recién Nacidos , Antígenos CD/genética , Reacción de Prevención/fisiología , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , ADP-Ribosa Cíclica/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Células HEK293 , Humanos , Inmunohistoquímica , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Modelos Animales , NADP/análogos & derivados , NADP/metabolismo , Nestina/metabolismo , ARN Mensajero/metabolismo
6.
Int J Mol Sci ; 17(5)2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27213354

RESUMEN

Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with complex genetic etiology. Recent studies have indicated that children with ASD may have altered folate or methionine metabolism, suggesting that the folate-methionine cycle may play a key role in the etiology of ASD. SLC19A1, also referred to as reduced folate carrier 1 (RFC1), is a member of the solute carrier group of transporters and is one of the key enzymes in the folate metabolism pathway. Findings from multiple genomic screens suggest the presence of an autism susceptibility locus on chromosome 21q22.3, which includes SLC19A1. Therefore, we performed a case-control study in a Japanese population. In this study, DNA samples obtained from 147 ASD patients at the Kanazawa University Hospital in Japan and 150 unrelated healthy Japanese volunteers were examined by the sequence-specific primer-polymerase chain reaction method pooled with fluorescence correlation spectroscopy. p < 0.05 was considered to represent a statistically significant outcome. Of 13 single nucleotide polymorphisms (SNPs) examined, a significant p-value was obtained for AA genotype of one SNP (rs1023159, OR = 0.39, 95% CI = 0.16-0.91, p = 0.0394; Fisher's exact test). Despite some conflicting results, our findings supported a role for the polymorphism rs1023159 of the SLC19A1 gene, alone or in combination, as a risk factor for ASD. However, the findings were not consistent after multiple testing corrections. In conclusion, although our results supported a role of the SLC19A1 gene in the etiology of ASD, it was not a significant risk factor for the ASD samples analyzed in this study.


Asunto(s)
Trastorno del Espectro Autista/genética , Cromosomas Humanos Par 21/genética , Polimorfismo de Nucleótido Simple , Proteína Portadora de Folato Reducido/genética , Adolescente , Pueblo Asiatico , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/metabolismo , Cromosomas Humanos Par 21/metabolismo , Femenino , Humanos , Japón/epidemiología , Masculino , Proteína Portadora de Folato Reducido/metabolismo , Factores de Riesgo
7.
Neuropsychopharmacol Rep ; 44(1): 42-50, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37915257

RESUMEN

AIM: The present study aimed to examine the association between copy number variations (CNVs) in parkin (PRKN) and schizophrenia (SCZ) and autism spectrum disorder (ASD) in a large case-control sample. METHOD: Array comparative genomic hybridization was performed on 3111 cases with SCZ, 1236 cases with ASD, and 2713 controls. We systematically prioritized likely pathogenic CNVs (LP-CNVs) in PRKN and examined their association with SCZ and ASD. RESULTS: In total, 3014 SCZ cases (96.9%), 1205 ASD cases (97.5%), and 2671 controls (98.5%) passed quality control. We found that monoallelic carriers of LP-CNVs in PRKN were common (70/6890, 1.02%) and were not at higher risk of SCZ (p = 0.29) or ASD (p = 0.72). We observed that the distribution pattern of LP-CNVs in the Japanese population was consistent with those in other populations. We also identified a patient diagnosed with SCZ and early-onset Parkinson's disease carrying biallelic pathogenic CNVs in PRKN. The absence of Parkinson's symptoms in 10 other monoallelic carriers of the same pathogenic CNV further reflects the lack of effect of monoallelic pathogenic variants in PRKN in the absence of a second hit. CONCLUSION: The present findings suggest that monoallelic CNVs in PRKN do not confer a significant risk for SCZ or ASD. However, further studies to investigate the association between biallelic CNVs in PRKN and SCZ and ASD are warranted.


Asunto(s)
Trastorno del Espectro Autista , Esquizofrenia , Humanos , Trastorno del Espectro Autista/genética , Estudios de Casos y Controles , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Ubiquitina-Proteína Ligasas/genética
8.
Nature ; 446(7131): 41-5, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17287729

RESUMEN

CD38, a transmembrane glycoprotein with ADP-ribosyl cyclase activity, catalyses the formation of Ca2+ signalling molecules, but its role in the neuroendocrine system is unknown. Here we show that adult CD38 knockout (CD38-/-) female and male mice show marked defects in maternal nurturing and social behaviour, respectively, with higher locomotor activity. Consistently, the plasma level of oxytocin (OT), but not vasopressin, was strongly decreased in CD38-/- mice. Replacement of OT by subcutaneous injection or lentiviral-vector-mediated delivery of human CD38 in the hypothalamus rescued social memory and maternal care in CD38-/- mice. Depolarization-induced OT secretion and Ca2+ elevation in oxytocinergic neurohypophysial axon terminals were disrupted in CD38-/- mice; this was mimicked by CD38 metabolite antagonists in CD38+/+ mice. These results reveal that CD38 has a key role in neuropeptide release, thereby critically regulating maternal and social behaviours, and may be an element in neurodevelopmental disorders.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Conducta Materna/fisiología , Oxitocina/metabolismo , Conducta Social , ADP-Ribosil Ciclasa 1/deficiencia , ADP-Ribosil Ciclasa 1/genética , Amnesia/genética , Amnesia/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Femenino , Regulación de la Expresión Génica , Humanos , Inyecciones , Masculino , Memoria/fisiología , Ratones , Actividad Motora/fisiología , Oxitocina/administración & dosificación , Oxitocina/sangre , Oxitocina/farmacología , Vasopresinas/sangre
9.
Front Immunol ; 14: 1197265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37313401

RESUMEN

Bone marrow stromal cell antigen-1 (BST-1/CD157) is an immune/inflammatory regulator that functions as both nicotinamide adenine dinucleotide-metabolizing ectoenzyme and cell-surface signaling receptor. BST-1/CD157 is expressed not only in peripheral tissues, but in the central nervous system (CNS). Although its pathophysiological significance in the CNS is still unclear, clinical genetic studies over a decade have begun revealing relationships between BST-1/CD157 and neuropsychiatric diseases including Parkinson's disease, autism spectrum disorders, sleep disorders, depressive disorders and restless leg syndrome. This review summarizes the accumulating evidence for the involvement of BST-1/CD157 in these disorders.


Asunto(s)
Trastorno del Espectro Autista , Enfermedades del Sistema Inmune , Células Madre Mesenquimatosas , Humanos , Polimorfismo Genético , Sistema Nervioso Central
10.
Brain Sci ; 13(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36831858

RESUMEN

Autism spectrum disorder (ASD) is a congenital, lifelong neurodevelopmental disorder whose main symptom is impaired social communication and interaction. However, no drug can treat social deficits in patients with ASD, and treatments to alleviate social behavioral deficits are sorely needed. Here, we examined the effect of oral supplementation of maca (Lepidium meyenii) on social deficits of in utero-exposed valproic acid (VPA) mice, widely used as an ASD model. Although maca is widely consumed as a fertility enhancer and aphrodisiac, it possesses multiple beneficial activities. Additionally, it benefits learning and memory in experimental animal models. Therefore, the effect of maca supplementation on the social behavioral deficit of VPA mice was assessed using a social interaction test, a three-stage open field test, and a five-trial social memory test. The oral supplementation of maca attenuated social interaction behavior deficit and social memory impairment. The number of c-Fos-positive cells and the percentage of c-Fos-positive oxytocin neurons increased in supraoptic and paraventricular neurons of maca-treated VPA mice. These results reveal for the first time that maca is beneficial to social memory and that it restores social recognition impairments by augmenting the oxytocinergic neuronal pathways, which play an essential role in diverse social behaviors.

11.
PLoS One ; 18(2): e0281363, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36758056

RESUMEN

Contraction of the uterus is critical for parturient processes. Insufficient uterine tone, resulting in atony, can potentiate postpartum hemorrhage; thus, it is a major risk factor and is the main cause of maternity-related deaths worldwide. Oxytocin (OT) is recommended for use in combination with other uterotonics for cases of refractory uterine atony. However, as the effect of OT dose on uterine contraction and control of blood loss during cesarean delivery for labor arrest are highly associated with side effects, small amounts of uterotonics may be used to elicit rapid and superior uterine contraction. We have previously synthesized OT analogs 2 and 5, prolines at the 7th positions of which were replaced with N-(p-fluorobenzyl) glycine [thus, compound 2 is now called fluorobenzyl (FBOT)] or N-(3-hydroxypropyl) glycine [compound 5 is now called hydroxypropyl (HPOT)], which exhibited highly potent binding affinities for human OT receptors in vitro. In this study, we measured the ex vivo effects of FBOT and HPOT on contractions of uteri isolated from human cesarean delivery samples and virgin female mice. We evaluated the potency and efficacy of the analogs on uterine contraction, additivity with OT, and the ability to overcome the effects of atosiban, an OT antagonist. In human samples, the potency rank judged by the calculated EC50 (pM) was as follows: HPOT (189) > FBOT (556) > OT (5,340) > carbetocin (12,090). The calculated Emax was 86% for FBOT and 75% for HPOT (100%). Recovery from atosiban inhibition after HPOT treatment was as potent as that after OT treatment. HPOT showed additivity with OT. FBOT (56 pM) was found to be the strongest agonist in virgin mouse uterus. HPOT and FBOT demonstrated high potency and partial agonist efficacy in the human uterus. These results suggested that HPOT and FBOT are highly uterotonic for the human uterus and performed better than OT, indicating that they may prevent postpartum hemorrhage.


Asunto(s)
Fabaceae , Hemorragia Posparto , Femenino , Embarazo , Ratones , Humanos , Animales , Oxitocina/farmacología , Oxitocina/uso terapéutico , Contracción Uterina , Hemorragia Posparto/tratamiento farmacológico , Hemorragia Posparto/prevención & control , Glicina/farmacología , Glicina/metabolismo , Útero/metabolismo , Receptores de Oxitocina/metabolismo
12.
Horm Behav ; 61(3): 351-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22227279

RESUMEN

Here, we review the functional roles of cyclic ADP-ribose and CD38, a transmembrane protein with ADP-ribosyl cyclase activity, in mouse social behavior via the regulation of oxytocin (OXT) release, an essential component of social cognition. Herein we describe data detailing the molecular mechanism of CD38-dependent OXT secretion in CD38 knockout mice. We also review studies that used OXT, OXT receptor (OXTR), or CD38 knockout mice. Additionally, we compare the behavioral impairments that occur in these knockout mice in relation to the OXT system and CD38. This review also examines autism spectrum disorder (ASD), which is characterized by social and communication impairments, in relation to defects in the OXT system. Two single nucleotide polymorphisms (SNPs) in the human CD38 gene are possible risk factors for ASD via inhibition of OXT function. Further analysis of CD38 in relation to the OXT system may provide a better understanding of the neuroendocrinological roles of OXT and CD38 in the hypothalamus and of the pathophysiology of ASD. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.


Asunto(s)
ADP-Ribosil Ciclasa 1/fisiología , Oxitocina/metabolismo , Conducta Social , ADP-Ribosil Ciclasa/genética , ADP-Ribosil Ciclasa/metabolismo , ADP-Ribosil Ciclasa 1/genética , Animales , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , ADP-Ribosa Cíclica/farmacología , Exones/genética , Humanos , Intrones/genética , Ratones , Ratones Noqueados , Oxitocina/genética , Polimorfismo de Nucleótido Simple
13.
Brain Sci ; 12(9)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36138982

RESUMEN

Oxytocin (OT) is a neuropeptide involved in human social behaviors and reproduction. Non-invasive OT levels in saliva have recently roused interest as it does not require a specialized medical setting. Here, we observed one woman's basal serum and saliva OT from pregnancy to 1 year postpartum to track OT concentration changes over this period. We examined the changes in salivary OT levels over time in response to maternal physiological and behavioral responses. The fluctuation of saliva OT levels is well correlated with serum OT during pregnancy and breastfeeding. However, while salivary OT increased rapidly during direct interaction (social interaction tests) with the infant and/or when the mother was watching her own infant's video (video tests), no increase was observed in serum. We used social interaction and video tests on a group of mothers (nine mothers for social interaction and six for the video test) to clarify these single-subject results. In both tests, the mothers had increased OT in their saliva but not serum. Our study may suggest that salivary samples reflect not only the physical but also the emotional state and that saliva samples may be useful for monitoring women's OT levels during pre- and postpartum periods. Further studies with larger sample numbers are necessary to confirm the rapid changes in salivary OT levels in response to maternal physiological and behavioral responses.

14.
Neuropsychopharmacol Rep ; 42(3): 352-355, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35733350

RESUMEN

AIM: The receptive language ability of individuals with autism spectrum disorder (ASD) seems to lag behind expressive language ability. Several autism-related genes may influence this developmental delay. Polymorphism of one such gene, namely, the contactin-associated protein-like 2 gene (CNTNAP2), affects receptive language in individuals with language delay. However, the association between CNTNAP2 polymorphism and receptive language in individuals with no language delay remains unclear. METHODS: We included 59 children with ASD and 57 children with typical development in this study and investigated this association using coarse-grained exact matching. RESULTS: We present the first evidence of an association between CNTNAP2 rs2710102 (A-allele carrier) and reduced receptive language ability in children with ASD whose language development was not delayed. Similarly, among children with typical development, A-allele carriers had lower receptive language ability, but the difference was non-significant. CONCLUSIONS: It is possible that the effect of rs2710102 on receptive language ability is larger in the presence of autism-related genes. Consequently, we speculate that the effect of rs2710102 on receptive language ability would be exerted in combination with other genes. These findings provide new insights into the genetic interactions between mutations associated with common language disorders and ASD and identify molecular mechanisms and risk alleles that contribute to receptive vocabulary. These findings also provide practical guidance in terms of providing candidate genetic markers that may provide opportunities for targeted early intervention to stratify risk and improve prognosis for poor receptive language development in children with ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Desarrollo del Lenguaje , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/genética , Niño , Contactinas/genética , Marcadores Genéticos , Humanos , Desarrollo del Lenguaje , Trastornos del Desarrollo del Lenguaje/complicaciones , Trastornos del Desarrollo del Lenguaje/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
15.
Front Psychiatry ; 13: 959763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990060

RESUMEN

Individuals with sub-threshold autism spectrum disorder (ASD) are those who have social communication difficulties but do not meet the full ASD diagnostic criteria. ASD is associated with an atypical brain network; however, no studies have focused on sub-threshold ASD. Here, we used the graph approach to investigate alterations in the brain networks of children with sub-threshold ASD, independent of a clinical diagnosis. Graph theory is an effective approach for characterizing the properties of complex networks on a large scale. Forty-six children with ASD and 31 typically developing children were divided into three groups (i.e., ASD-Unlikely, ASD-Possible, and ASD-Probable groups) according to their Social Responsiveness Scale scores. We quantified magnetoencephalographic signals using a graph-theoretic index, the phase lag index, for every frequency band. Resultantly, the ASD-Probable group had significantly lower small-worldness (SW) in the delta, theta, and beta bands than the ASD-Unlikely group. Notably, the ASD-Possible group exhibited significantly higher SW than the ASD-Probable group and significantly lower SW than the ASD-Unlikely group in the delta band only. To our knowledge, this was the first report of the atypical brain network associated with sub-threshold ASD. Our findings indicate that magnetoencephalographic signals using graph theory may be useful in detecting sub-threshold ASD.

16.
Neurosci Lett ; 788: 136827, 2022 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-35944594

RESUMEN

Autism spectrum disorder (ASD) is a heterogeneously pervasive developmental disorder that usually occurs before 3 years old. Animal models of psychiatric disorders are essential for elucidating the underlying preclinical neural mechanisms. Mice that are prenatally exposed to valproic acid (VPA, F1) are widely used as an ASD model. Epigenetics has recently been suggested as a contributor to ASD etiology with the hypothesis that epigenetic marks can be transgenerationally inherited. Previous studies have indicated that autism-like behavioral phenotypes detected in F1 VPA mice transgenetically appear in F2 and F3 generations. However, studies on the autism-like behavioral phenotypes during the early postnatal days in subsequent generations are scarce. Here, the behavioral deficit on postnatal day 5 of the F2 generation was examined to assess the onset of ASD symptoms. Communication disorders were examined by analyzing maternal separation-induced ultrasonic vocalizations (USVs). Although the duration and frequency of USVs were not significantly altered, the emission rate was significantly lower in F2 VPA pups. Furthermore, the locomotive activity with or without littermates was altered in F2 VPA pups. The data of the current study suggest that social deficit and impaired locomotion are inherited by the subsequent generation and were apparent on early postnatal day 5.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Efectos Tardíos de la Exposición Prenatal , Animales , Trastorno del Espectro Autista/inducido químicamente , Trastorno Autístico/inducido químicamente , Conducta Animal , Comunicación , Modelos Animales de Enfermedad , Femenino , Humanos , Locomoción , Privación Materna , Ratones , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ácido Valproico/farmacología
17.
Front Neurosci ; 16: 858070, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873827

RESUMEN

Investigating the neurocircuit and synaptic sites of action of oxytocin (OT) in the brain is critical to the role of OT in social memory and behavior. To the same degree, it is important to understand how OT is transported to the brain from the peripheral circulation. To date, of these, many studies provide evidence that CD38, CD157, and receptor for advanced glycation end-products (RAGE) act as regulators of OT concentrations in the brain and blood. It has been shown that RAGE facilitates the uptake of OT in mother's milk from the digestive tract to the cell surface of intestinal epithelial cells to the body fluid and subsequently into circulation in male mice. RAGE has been shown to recruit circulatory OT into the brain from blood at the endothelial cell surface of neurovascular units. Therefore, it can be said that extracellular OT concentrations in the brain (hypothalamus) could be determined by the transport of OT by RAGE from the circulation and release of OT from oxytocinergic neurons by CD38 and CD157 in mice. In addition, it has recently been found that gavage application of a precursor of nicotinamide adenine dinucleotide, nicotinamide riboside, for 12 days can increase brain OT in mice. Here, we review the evaluation of the new concept that RAGE is involved in the regulation of OT dynamics at the interface between the brain, blood, and intestine in the living body, mainly by summarizing our recent results due to the limited number of publications on related topics. And we also review other possible routes of OT recruitment to the brain.

18.
Biol Pharm Bull ; 34(9): 1369-72, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21881219

RESUMEN

Oxytocin (OXT) in the hypothalamus is the biological basis of social recognition, trust, and bonding. We showed that CD38, a leukaemia cell marker, plays an important role in the hypothalamus in the process of OXT release in adult mice. Disruption of Cd38 (Cd38(-/-)) produced impairment of maternal behavior and male social recognition in mice, similar to the behavior observed in Oxt and OXT receptor (Oxtr) gene knockout (Oxt(-/-) and Oxtr(-/-), respectively) mice. Locomotor activity induced by separation from the dam was higher and the number of ultrasonic vocalization (USV) calls was lower in Cd38(-/-) than Cd38(+/+) pups. These phenotypes seemed to be caused by the high plasma OXT levels during development from neonates to 3-week-old juvenile mice. ADP-ribosyl cyclase activity was markedly lower in the knockout mice from birth, suggesting that weaning for mice is a critical time window of differentiating plasma OXT. Contribution by breastfeeding was an important exogenous source for regulating plasma OXT before weaning by the presence of OXT in milk and the dam's mammary glands. The dissimilarity of Cd38(-/-) infant behaviour to Oxt(-/-) or Oxtr(-/-) mice can be explained partly by this exogenous source of OXT. These results suggest that secretion of OXT into the brain in a CD38-dependent manner may play an important role in the development of social behavior, and mice with OXT signalling deficiency, including Cd38(-/-), Oxt(-/-) and Oxtr(-/-) mice are good animal models for developmental disorders, such as autism.


Asunto(s)
ADP-Ribosil Ciclasa 1/genética , Trastorno Autístico/genética , Modelos Animales de Enfermedad , Oxitocina/metabolismo , ADP-Ribosil Ciclasa/metabolismo , Animales , Trastorno Autístico/metabolismo , Ratones , Ratones Noqueados , Oxitocina/sangre
19.
Physiol Behav ; 235: 113395, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33757778

RESUMEN

Receptor for advanced glycation end-products (RAGE) is a pattern recognition molecule belonging to the immunoglobulin superfamily, and it plays a role in the remodeling of endothelial cells under pathological conditions. Recently, it was shown that RAGE is a binding protein for oxytocin (OT) and a transporter of OT to the brain on neurovascular endothelial cells via blood circulation. Deletion of the mouse RAGE gene, Ager (RAGE KO), induces hyperactivity in male mice. Impairment of pup care by mother RAGE KO mice after stress exposure results in the death of neonates 1-2 days after pup birth. Therefore, to understand the role of RAGE during the postpartum period, this study aims to examine parental behavior in female RAGE KO mice and ultrasonic vocalizations in pups. RAGE KO mothers without stress before delivery raised their pups and displayed hyperactivity at postpartum day (PPD) 3. KO dams showed impaired retrieval or interaction behavior after additional stress, such as body restraint stress or exposure to a novel environment, but such impaired behavior disappeared at PPD 7. Postnatal day 3 pups emitted ultrasonic vocalizations at >60 kHz as a part of the mother-pup relationship, but the number and category of calls by RAGE KO pups were significantly lower than wild-type pups. The results indicate that RAGE is important in the manifestation of normal parental behavior in dams and for receiving maternal care by mouse pups; moreover, brain OT recruited by RAGE plays a role in damping of signals of additional external stress and endogenous stress during the early postpartum period. Thus, RAGE-dependent OT may be critical for initiating and maintaining the normal mother-child relationship.


Asunto(s)
Células Endoteliales , Madres , Animales , Femenino , Humanos , Masculino , Conducta Materna , Ratones , Periodo Posparto , Receptor para Productos Finales de Glicación Avanzada/genética
20.
PLoS One ; 16(12): e0260548, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34898614

RESUMEN

Sub-threshold autistic traits are common in the general population. Children with sub-threshold autistic traits have difficulties with social adaptation. Contactin-associated protein-like 2 (CNTNAP2) is associated with the development of Autism spectrum disorder (ASD) and the single-nucleotide polymorphism rs2710102 (G/A) of CNTNAP2 is suggested to contribute to sub-threshold social impairments and intellectual disabilities. We recruited 67 children with Autistic disorder (AD) (49 boys, 18 girls, aged 38-98 months) and 57 typically developing (TD) children (34 boys, 23 girls, aged 53-90 months). We assessed the participants' intelligence and social reciprocity using the Kaufman Assessment Battery for Children (K-ABC) and the Social Responsiveness Scale (SRS), respectively. Genomic DNA was extracted from the buccal mucosa and genotyped for rs2710102. A chi-square test revealed a significant association between genotype and group [χ2(2) = 6.56, p = 0.038]. When a co-dominant model was assumed, the results from linear regression models demonstrated that TD children with A-carriers (AA + AG) presented higher SRS T-scores [t(55) = 2.11, p = 0.039] and lower simultaneous processing scale scores of K-ABC [t(55) = -2.19, p = 0.032] than those with GG homozygotes. These associations were not significant in children with ASD. TD children with the rs2710102 A-allele may have more sub-threshold autistic traits than those with GG homozygotes, reflected in higher SRS scores and lower simultaneous processing scale scores. These results support the use of genetic evidence to detect sub-threshold autistic traits.


Asunto(s)
Trastorno Autístico/diagnóstico , Discapacidad Intelectual/diagnóstico , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Alelos , Trastorno Autístico/genética , Niño , Preescolar , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Homocigoto , Humanos , Discapacidad Intelectual/genética , Pruebas de Inteligencia , Japón , Masculino , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA