Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 611, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926637

RESUMEN

Canola, a vital oilseed crop, is grown globally for food and biodiesel. With the enormous demand for growing various crops, the utilization of agriculturally marginal lands is emerging as an attractive alternative, including brackish-saline transitional lands. Salinity is a major abiotic stress limiting growth and productivity of most crops, and causing food insecurity. Salicylic acid (SA), a small-molecule phenolic compound, is an essential plant defense phytohormone that promotes immunity against pathogens. Recently, several studies have reported that SA was able to improve plant resilience to withstand high salinity. For this purpose, a pot experiment was carried out to ameliorate the negative effects of sodium chloride (NaCl) on canola plants through foliar application of SA. Two canola varieties Faisal (V1) and Super (V2) were assessed for their growth performance during exposure to high salinity i.e. 0 mM NaCl (control) and 200 mM NaCl. Three levels of SA (0, 10, and 20 mM) were applied through foliar spray. The experimental design used for this study was completely randomized design (CRD) with three replicates. The salt stress reduced the shoot and root fresh weights up to 50.3% and 47% respectively. In addition, foliar chlorophyll a and b contents decreased up to 61-65%. Meanwhile, SA treatment diminished the negative effects of salinity and enhanced the shoot fresh weight (49.5%), root dry weight (70%), chl. a (36%) and chl. b (67%). Plants treated with SA showed an increased levels of both enzymatic i.e. (superoxide dismutase (27%), peroxidase (16%) and catalase (34%)) and non-enzymatic antioxidants i.e. total soluble protein (20%), total soluble sugar (17%), total phenolic (22%) flavonoids (19%), anthocyanin (23%), and endogenous ascorbic acid (23%). Application of SA also increased the levels of osmolytes i.e. glycine betaine (31%) and total free proline (24%). Salinity increased the concentration of Na+ ions and concomitantly decreased the K+ and Ca2+ absorption in canola plants. Overall, the foliar treatments of SA were quite effective in reducing the negative effects of salinity. By comparing both varieties of canola, it was observed that variety V2 (Super) grew better than variety V1 (Faisal). Interestingly, 20 mM foliar application of SA proved to be effective in ameliorating the negative effects of high salinity in canola plants.


Asunto(s)
Brassica napus , Ácido Salicílico , Estrés Salino , Brassica napus/efectos de los fármacos , Brassica napus/crecimiento & desarrollo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Estrés Salino/efectos de los fármacos , Clorofila/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Cloruro de Sodio/farmacología , Antioxidantes/metabolismo
2.
Ecotoxicol Environ Saf ; 281: 116620, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38905935

RESUMEN

Iron-nanoparticles (Fe-NPs) are increasingly been utilized in environmental applications due to their efficacy and strong catalytic activities. The novelty of nanoparticle science had attracted many researchers and especially for their green synthesis, which can effectively reuse biological resources during the polymerization reactions. Thus, the synthesis of Fe-NPs utilizing plant extracts could be considered as the eco-friendly, simple, rapid, energy-efficient, sustainable, and cost-effective. The green synthesis route can be recognized as a practical, valuable, and economically effective alternative for large-scale production. During the production process, some biomolecules present in the extracts undergo metal salts reduction, which can serve as both a capping and reducing mechanism, enhancing the reactivity and stability of green-synthesized Fe-NPs. The diversity of species provided a wide range of potential sources for green synthesis of Fe-NPs. With improved understanding of the specific biomolecules involved in the bioreduction and stabilization processes, it will become easier to identify and utilize new, potential plant materials for Fe-NPs synthesis. Newly synthesized Fe-NPs require different characterization techniques such as transmission electron microscope, ultraviolet-visible spectrophotometry, and X-ray absorption fine structure, etc, for the determination of size, composition, and structure. This review described and assessed the recent advancements in understanding green-synthesized Fe-NPs derived from plant-based material. Detailed information on various plant materials suitable of yielding valuable biomolecules with potential diverse applications in environmental safety. Additionally, this review examined the characterization techniques employed to analyze Fe-NPs, their stability, accumulation, mobility, and fate in the environment. Holistically, the review assessed the applications of Fe-NPs in remediating wastewaters, organic residues, and inorganic contaminants. The toxicity of Fe-NPs was also addressed; emphasizing the need to refine the synthesis of green Fe-NPs to ensure safety and environmental friendliness. Moving forward, the future challenges and opportunities associated with the green synthesis of Fe-NPs would motivate novel research about nanoparticles in new directions.

3.
Ecotoxicol Environ Saf ; 274: 116181, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460406

RESUMEN

The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.


Asunto(s)
Ammi , Contaminantes del Suelo , Titanio , Antioxidantes/metabolismo , Ammi/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Cromo/análisis , Ecosistema , Estrés Oxidativo , Suelo , Expresión Génica , Contaminantes del Suelo/análisis
4.
Ecotoxicol Environ Saf ; 274: 116204, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489905

RESUMEN

Climate change and cadmium (Cd) contamination pose severe threats to rice production and food security. Biochar (BC) has emerged as a promising soil amendment for mitigating these challenges. To investigate the BC effects on paddy soil upon GHG emissions, Cd bioavailability, and its accumulation, a meta-analysis of published data from 2000 to 2023 was performed. Data Manager 5.3 and GetData plot Digitizer software were used to obtain and process the data for selected parameters. Our results showed a significant increase of 18% in soil pH with sewage sludge BC application, while 9% increase in soil organic carbon (SOC) using bamboo chips BC. There was a significant reduction in soil bulk density (8%), but no significant effects were observed for soil porosity, except for wheat straw BC which reduced the soil porosity by 6%. Sewage sludge and bamboo chips BC significantly reduced carbon dioxide (CO2) by 7-8% while municipal biowaste reduced methane (CH4) emissions by 2%. In the case of heavy metals, sunflower seedshells-derived materials and rice husk BC significantly reduced the bioavailable Cd in paddy soils by 24% and 12%, respectively. Cd uptake by rice roots was lowered considerably by the addition of kitchen waste (22%), peanut hulls (21%), and corn cob (15%) based BC. Similarly, cotton sticks, kitchen waste, peanut hulls, and rice husk BC restricted Cd translocation from rice roots to shoots by 22%, 27%, 20%, and 19%, respectively, while sawdust and rice husk-based BC were effective for reducing Cd accumulation in rice grains by 25% and 13%. Regarding rice yield, cotton sticks-based BC significantly increased the yield by 37% in Cd-contaminated paddy soil. The meta-analysis demonstrated that BC is an effective and multi-pronged strategy for sustainable and resilient rice cultivation by lowering greenhouse gas emissions and Cd accumulation while improving yields under the increasing threat of climate change.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Suelo , Dióxido de Carbono/análisis , Aguas del Alcantarillado , Metano , Carbono , Carbón Orgánico , Arachis , Contaminantes del Suelo/análisis
5.
Plant Physiol ; 189(4): 2481-2499, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35604107

RESUMEN

Chinese jujube (Ziziphus jujuba) is an important fruit tree in China, and soil salinity is the main constraint affecting jujube production. It is unclear how arbuscular mycorrhizal (AM) symbiosis supports jujube adaptation to salt stress. Herein, we performed comparative physiological, ion flux, fatty acid (FA) metabolomic, and transcriptomic analyses to examine the mechanism of AM jujube responding to salt stress. AM seedlings showed better performance during salt stress. AM symbiosis altered phytohormonal levels: indole-3-acetic acid and abscisic acid contents were significantly increased in AM roots and reduced by salt stress. Mycorrhizal colonization enhanced root H+ efflux and K+ influx, while inducing expression of plasma membrane-type ATPase 7 (ZjAHA7) and high-affinity K+ transporter 2 (ZjHAK2) in roots. High K+/Na+ homeostasis was maintained throughout salt exposure. FA content was elevated in AM leaves as well as roots, especially for palmitic acid, oleic acid, trans oleic acid, and linoleic acid, and similar effects were also observed in AM poplar (Populus. alba × Populus. glandulosa cv. 84K) and Medicago truncatula, indicating AM symbiosis elevating FA levels could be a conserved physiological effect. Gene co-expression network analyses uncovered a core gene set including 267 genes in roots associated with AM symbiosis and conserved transcriptional responses, for example, FA metabolism, phytohormone signal transduction, SNARE interaction in vesicular transport, and biotin metabolism. In contrast to widely up-regulated genes related to FA metabolism in AM roots, limited genes were affected in leaves. We propose a model of AM symbiosis-linked reprogramming of FA metabolism and provide a comprehensive insight into AM symbiosis with a woody species adaptation to salt stress.


Asunto(s)
Micorrizas , Ziziphus , Frutas , Micorrizas/fisiología , Ácido Oléico/metabolismo , Raíces de Plantas/metabolismo , Estrés Salino , Simbiosis/genética
6.
Physiol Plant ; 175(2): e13873, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36762694

RESUMEN

The coordination/trade-off among below-ground strategies for phosphorus (P) acquisition, including root morphology, carboxylate exudation and colonisation by arbuscular mycorrhizal fungi (AMF), is not well understood. This is the first study investigating the relationships between root nodulation, morphology, carboxylates and colonisation by an indigenous community of AMF under varying P levels and source. Two chickpea genotypes with contrasting amounts of rhizosheath carboxylates were grown in pots at six P levels (from 0 to 160 µg g-1 ) as KH2 PO4 (KP, highly soluble) or FePO4 (FeP, sparingly soluble), with or without AMF (±AMF) treatment. Under both FeP and KP, the presence of AMF inhibited shoot growth and shoot branching, decreased total root length and specific root length, increased mean root diameter and root tissue density and reduced carboxylates. However, the role of AMF in acquiring P differed between the two P sources, with the enhanced P acquisition under FeP while not under KP. Co-inoculation of AMF and rhizobia enhanced nodulation under FeP, but not under KP. Our results suggest that the effects of AMF on shoot branching were mediated by cytokinins as the reduced shoot branching in FeP40 and KP40 under +AMF relative to -AMF coincided with a decreased concentration of cytokinins in xylem sap for both genotypes.


Asunto(s)
Cicer , Micorrizas , Fósforo , Raíces de Plantas , Fosfatos , Hierro
7.
Ecotoxicol Environ Saf ; 249: 114408, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516621

RESUMEN

The unpredictable climatic perturbations, the expanding industrial and mining sectors, excessive agrochemicals, greater reliance on wastewater usage in cultivation, and landfill leachates, are collectively causing land degradation and affecting cultivation, thereby reducing food production globally. Biochar can generally mitigate the unfavourable effects brought about by climatic perturbations (drought, waterlogging) and degraded soils to sustain crop production. It can also reduce the bioavailability and phytotoxicity of pollutants in contaminated soils via the immobilization of inorganic and/or organic contaminants, commonly through surface complexation, electrostatic attraction, ion exchange, adsorption, and co-precipitation. When biochar is applied to soil, it typically neutralizes soil acidity, enhances cation exchange capacity, water holding capacity, soil aeration, and microbial activity. Thus, biochar has been was widely used as an amendment to ameliorate crop abiotic/biotic stress. This review discusses the effects of biochar addition under certain unfavourable conditions (salinity, drought, flooding and heavy metal stress) to improve plant resilience undergoing these perturbations. Biochar applied with other stimulants like compost, humic acid, phytohormones, microbes and nanoparticles could be synergistic in some situation to enhance plant resilience and survivorship in especially saline, waterlogged and arid conditions. Overall, biochar can provide an effective and low-cost solution, especially in nutrient-poor and highly degraded soils to sustain plant cultivation.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Carbón Orgánico , Agricultura , Suelo , Contaminantes del Suelo/análisis
8.
Ecotoxicol Environ Saf ; 263: 115388, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37611478

RESUMEN

Globally, many low to medium yielding peanut fields have the potential for further yield improvement. Low phosphorus (P) limitation is one of the significant factors curtailing Arachis hypogaea productivity in many regions. In order to demonstrate the effects of gamma-aminobutyric acid (GABA) on peanuts growing under P deficiency, we used a pot-based experiment to examine the effects of exogenous GABA on alleviating P deficiency-induced physiological changes and growth inhibition in peanuts. The key physiological parameters examined were foliar gas exchange, photochemical efficiency, proton motive force, reactive oxygen species (ROS), and adenosine triphosphate (ATP) synthase activity of peanuts under cultivation with low P (LP, 0.5 mM P) and control conditions. During low P, the cyclic electron flow (CEF) maintained the high proton gradient (∆pH) induced by low ATP synthetic activity. Applying GABA during low P conditions stimulated CEF and reduced the concomitant ROS generation and thereby protecting the foliar photosystem II (PSII) from photoinhibition. Specifically, GABA enhanced the rate of electronic transmission of PSII (ETRII) by pausing the photoprotection mechanisms including non-photochemical quenching (NPQ) and ∆pH regulation. Thus, GABA was shown to be effective in restoring peanut growth when encountering P deficiency. Exogenous GABA alleviated two symptoms (increased root-shoot ratio and photoinhibition) of P-deficient peanuts. This is possibly the first report of using exogenous GABA to restore photosynthesis and growth under low P availability. Therefore, foliar applications of GABA could be a simple, safe and effective approach to overcome low yield imposed by limited P resources (low P in soils or P-fertilizers are unavailable) for sustainable peanut cultivation and especially in low to medium yielding fields.


Asunto(s)
Arachis , Fotosíntesis , Especies Reactivas de Oxígeno , Adenosina Trifosfato , Fósforo/farmacología , Ácido gamma-Aminobutírico/farmacología
9.
Ecotoxicol Environ Saf ; 267: 115646, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37939556

RESUMEN

Carbon dioxide (CO2) emissions from the combustion of fossil fuels and coal are primary contributors of greenhouse gases leading to global climate change and warming. The toxicity of heavy metals and metalloids in the environment threatens ecological functionality, diversity and global human life. The ability of microalgae to thrive in harsh environments such as industrial wastewater, polluted lakes, and contaminated seawaters presents new, environmentally friendly, and less expensive CO2 remediation solutions. Numerous microalgal species grown in wastewater for industrial purposes may absorb and convert nitrogen, phosphorus, and organic matter into proteins, oil, and carbohydrates. In any multi-faceted micro-ecological system, the role of bacteria and their interactions with microalgae can be harnessed appropriately to enhance microalgae performance in either wastewater treatment or algal production systems. This algal-bacterial energy nexus review focuses on examining the processes used in the capture, storage, and biological fixation of CO2 by various microalgal species, as well as the optimized production of microalgae in open and closed cultivation systems. Microalgal production depends on different biotic and abiotic variables to ultimately deliver a high yield of microalgal biomass.


Asunto(s)
Contaminantes Ambientales , Microalgas , Humanos , Dióxido de Carbono , Aguas Residuales , Bacterias
10.
Ecotoxicol Environ Saf ; 268: 115699, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979353

RESUMEN

This study investigated the physiological and molecular responses of rice genotype '9311' to Cd stress and the mitigating effects of silicon oxide nanoparticles (SiO NPs). Cd exposure severely hindered plant growth, chlorophyll content, photosynthesis, and Cd accumulation. However, SiO NPs supplementation, particularly the SiONP100 treatment, significantly alleviated Cd-induced toxicity, mitigating the adverse effects on plant growth while maintaining chlorophyll content and photosynthetic attributes. The SiONP100 treatment also reduced Cd accumulation, indicating a preference for Si uptake in genotype 9311. Complex interactions among Cd, Si, Mg, Ca, and K were uncovered, with fluctuations in MDA and H2O2 contents. Distinct morphological changes in stomatal aperture and mesophyll cell structures were observed, including changes in starch granules, grana thylakoids, and osmophilic plastoglobuli. Moreover, following SiONP100 supplementation, genotype 9311 increased peroxidase, superoxide dismutase, and catalase activities by 56%, 44%, and 53% in shoots and 62%, 49%, and 65% in roots, respectively, indicating a robust defense mechanism against Cd stress. Notably, OsNramp5, OsHMA3, OsSOD-Cu/Zn, OsCATA, OsCATB, and OsAPX1 showed significant expression after SiO NPs treatment, suggesting potential Cd translocation within rice tissues. Overall, SiO NPs supplementation holds promise for enhancing Cd tolerance in rice plants while maintaining essential physiological functions.


Asunto(s)
Nanopartículas , Oryza , Cadmio/metabolismo , Oryza/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Clorofila/metabolismo , Raíces de Plantas/metabolismo , Plantones
11.
Ecotoxicol Environ Saf ; 268: 115701, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979354

RESUMEN

Cadmium (Cd) stress in crops has been serious concern while little is known about the copper oxide nanoparticles (CuO NPs) effects on Cd accumulation by crops. This study investigated the effectiveness of CuO NPs in mitigating Cd contamination in wheat (Triticum aestivum L.) cultivation through a pot experiment, presenting an eco-friendly solution to a critical agricultural concern. The CuO NPs, synthesized using green methods, exhibited a circular shape with a crystalline structure and a particle size ranging from 8 to 12 nm. The foliar spray of CuO NPs was applied in four different concentrations i.e. control, 25, 50, 75, 100 mg/L. The obtained data demonstrated that, in comparison to the control group, CuO NPs had a beneficial influence on various growth metrics and straw and grain yields of T. aestivum. The green CuO NPs improved T. aestivum growth and physiology under Cd stress, enhanced selected enzyme activities, reduced oxidative stress, and decreased malondialdehyde levels in the T. aestivum plants. CuO NPs lowered Cd contents in T. aestivum tissues and boosted the uptake of essential nutrients from the soil. Overall, foliar applied CuO NPs were effective in minimizing Cd contents in grains thereby reducing the health risks associated with Cd excess in humans. However, more in depth studies with several plant species and application methods of CuO NPs are required for better utilization of NPs in agricultural purposes.


Asunto(s)
Nanopartículas , Contaminantes del Suelo , Humanos , Triticum , Cadmio/análisis , Cobre/farmacología , Contaminantes del Suelo/análisis , Nanopartículas/química , Suelo/química , Óxidos/farmacología
12.
Int J Phytoremediation ; 20(14): 1363-1368, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-27435694

RESUMEN

Phytoremediation is an emerging technology that utilizes plants to remediate contaminated environments. In this study, Axonopus compressus (Sw.) Beauv, a fast-growing and hardy groundcover with wide geographical distribution, was exposed to soil Mo treatments ranging from 100 to 1000 mg/kg under tropical greenhouse conditions for five weeks. Generally, Mo accumulation increased as the concentration of Mo in the soil increased. The species was found to accumulate about 4000 mg/kg of Mo without exhibiting severe physiological stress at 600 mg/kg of soil Mo. Maximum accumulation of 6000 mg/kg Mo was observed at the 1000 mg/kg soil Mo treatment, though with severe necrosis and eventual plant mortality. The physiological observations, Mo accumulation behavior, and a bioconcentration factor of about 1 indicated that A. compressus could be a potential biomonitor of Mo.


Asunto(s)
Molibdeno , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Poaceae , Suelo
13.
J Sep Sci ; 40(1): 346-360, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27717135

RESUMEN

Gibberellins, as a group of phytohormones, exhibit a wide variety of bio-functions within plant growth and development, which have been used to increase crop yields. Many analytical procedures, therefore, have been developed for the determination of the types and levels of endogenous and exogenous gibberellins. As plant tissues contain gibberellins in trace amounts (usually at the level of nanogram per gram fresh weight or even lower), the sample pre-treatment steps (extraction, pre-concentration, and purification) for gibberellins are reviewed in details. The primary focus of this comprehensive review is on the various analytical methods designed to meet the requirements for gibberellins analyses in complex matrices with particular emphasis on high-throughput analytical methods, such as gas chromatography, liquid chromatography, and capillary electrophoresis, mostly combined with mass spectrometry. The advantages and drawbacks of the each described analytical method are discussed. The overall aim of this review is to provide a comprehensive and critical view on the different analytical methods nowadays employed to analyze gibberellins in complex sample matrices and their foreseeable trends.


Asunto(s)
Técnicas de Química Analítica , Giberelinas/análisis , Agricultura/tendencias , Cromatografía de Gases , Cromatografía Liquida , Productos Agrícolas/química , Espectrometría de Masas
14.
Plants (Basel) ; 13(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498534

RESUMEN

Cadmium (Cd) and drought stresses are becoming dominant in a changing climate. This study explored the impact of Cd and Cd + drought stress on durum wheat grown in soil and sand at two Cd levels. The physiological parameters were studied using classical methods, while the root architecture was explored using non-invasive neutron computed tomography (NCT) for the first time. Under Cd + drought, all the gas exchange parameters were significantly affected, especially at 120 mg/kg Cd + drought. Elevated Cd was found in the sand-grown roots. We innovatively show the Cd stress impact on the wheat root volume and architecture, and the water distribution in the "root-growing media" was successfully visualized using NCT. Diverse and varying root architectures were observed for soil and sand under the Cd stress compared to the non-stress conditions, as revealed using NCT. The intrinsic structure of the growing medium was responsible for a variation in the water distribution pattern. This study demonstrated a pilot approach to use NCT for quantitative and in situ mapping of Cd stress on wheat roots and visualized the water dynamics in the rhizosphere. The physiological and NCT data provide valuable information to relate further to genetic information for the identification of Cd-resilient wheat varieties in the changing climate.

15.
Sci Rep ; 14(1): 13526, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866883

RESUMEN

Oreochromis niloticus fingerlings (5.15 ± 0.02 g; n = 315) were fed with different types of biochar (BC)-supplemented sunflower meal-based (SFM) diet to investigate the effects of various BC inclusions on their nutritional digestibility, body composition, hematology and mineral status for 60 days. Seven different diets were formulated based on the SFM based diet: one was a control (TD-I, CON) and the other six diets were supplemented with 2% BC derived from different sources. These BCs were derived from the following: cotton stick (CSBC, TD-II), wheat straw (WSBC, TD-III), corn cob (CCBC, TD-IV), house waste (HWBC, TD-V), grass waste (GWBC, TD-VI), and green waste (GwBC, TD-VII) biochar. There were three replicates for each test diet. Each tank had fifteen tilapia fingerlings, and they were fed with 5% of their live wet weight and twice daily. The outcomes showed that the supplementation of CCBC significantly elevated the growth, nutrient absorption, and body composition of the O. niloticus fingerlings (p < 0.05); with concomitant lowering of the quantity of nutrients released into the water bodies whereas HWBC gave negative impacts. The maximal mineral absorption efficiency (Ca, Na, K, Cu, Fe, P, and Zn) was achieved by the supplementation of 2% CCBC. All hematological parameters showed positive improvements (p < 0.05) with CCBC. Interestingly, CCBC significantly improved the growth, digestibility, body composition, hematology, and mineral status of O. niloticus.


Asunto(s)
Alimentación Animal , Composición Corporal , Carbón Orgánico , Cíclidos , Minerales , Animales , Composición Corporal/efectos de los fármacos , Carbón Orgánico/química , Carbón Orgánico/farmacología , Alimentación Animal/análisis , Cíclidos/crecimiento & desarrollo , Cíclidos/metabolismo , Minerales/análisis , Suplementos Dietéticos , Digestión , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria
16.
Heliyon ; 10(11): e31573, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841467

RESUMEN

Endophytic bacteria, living inside plants, are competent plant colonizers, capable of enhancing immune responses in plants and establishing a symbiotic relationship with them. Endophytic bacteria are able to control phytopathogenic fungi while exhibiting plant growth-promoting activity. Here, we discussed the mechanisms of phytopathogenic fungi control and plant growth-promoting actions discovered in some major groups of beneficial endophytic bacteria such as Bacillus, Paenibacillus, and Pseudomonas. Most of the studied strains in these genera were isolated from the rhizosphere and soils, and a more extensive study of these endophytic bacteria is needed. It is essential to understand the underlying biocontrol and plant growth-promoting mechanisms and to develop an effective screening approach for selecting potential endophytic bacteria for various applications. We have suggested a screening strategy to identify potentially useful endophytic bacteria based on mechanistic phenomena. The discovery of endophytic bacteria with useful biocontrol and plant growth-promoting characteristics is essential for developing sustainable agriculture.

17.
Plant Signal Behav ; 19(1): 2331357, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38564424

RESUMEN

Ornamental crops particularly cut flowers are considered sensitive to heavy metals (HMs) induced oxidative stress condition. Melatonin (MLT) is a versatile phytohormone with the ability to mitigate abiotic stresses induced oxidative stress in plants. Similarly, signaling molecules such as hydrogen sulfide (H2S) have emerged as potential options for resolving HMs related problems in plants. The mechanisms underlying the combined application of MLT and H2S are not yet explored. Therefore, we evaluated the ability of individual and combined applications of MLT (100 µM) and H2S in the form of sodium hydrosulfide (NaHS), a donor of H2S, (1.5 mM) to alleviate cadmium (Cd) stress (50 mg L-1) in stock (Matthiola incana L.) plants by measuring various morpho-physiological and biochemical characteristics. The results depicted that Cd-stress inhibited growth, photosynthesis and induced Cd-associated oxidative stress as depicted by excessive ROS accumulation. Combined application of MLT and H2S efficiently recovered all these attributes. Furthermore, Cd stress-induced oxidative stress markers including electrolyte leakage, malondialdehyde, and hydrogen peroxide are partially reversed in Cd-stressed plants by MLT and H2S application. This might be attributed to MLT or H2S induced antioxidant plant defense activities, which effectively reduce the severity of oxidative stress indicators. Overall, MLT and H2S supplementation, favorably regulated Cd tolerance in stock; yet, the combined use had a greater effect on Cd tolerance than the independent application.


Asunto(s)
Brassicaceae , Sulfuro de Hidrógeno , Melatonina , Sulfuros , Sulfuro de Hidrógeno/farmacología , Cadmio/toxicidad , Melatonina/farmacología , Estrés Oxidativo , Antioxidantes/metabolismo , Brassicaceae/metabolismo , Peróxido de Hidrógeno
18.
ACS Omega ; 9(14): 16187-16195, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617626

RESUMEN

Methylene blue (MB) is a toxic contaminant present in wastewater. Here, we prepared various composites of graphene oxide (GO) with graphitic carbon nitride (g-C3N4) and zinc oxide (ZnO) for the degradation of MB. In comparison to ZnO (22.9%) and g-C3N4/ZnO (76.0%), the ternary composites of GO/g-C3N4/ZnO showed 90% photocatalytic degradation of MB under a light source after 60 min. The experimental setup and parameters were varied to examine the process and effectiveness of MB degradation. Based on the results of the experiments, a proposed photocatalytic degradation process that explains the roles of GO, ZnO, and g-C3N4 in improving the photocatalytic efficacy of newly prepared GO/g-C3N4/ZnO was explored. Notably, the g-C3N4/ZnO nanocomposite's surface was uniformly covered with ZnO nanorods. The images of the samples clearly demonstrated the porous nature of GO/g-C3N4/ZnO photocatalysts, and even after being mixed with GO, the g-C3N4/ZnO composite retained the layered structure of the original material. The catalyst's porous structure plausibly enhanced the degradation of the contaminants. The high-clarity production of g-C3N4 and the effectiveness of the synthesis protocol were later validated by the absence of any trace contamination in the energy-dispersive X-ray spectroscopy (EDS) results. The composition of the ZnO elements and their spectra were revealed by the EDS results of the prepared ZnO nanorods, g-C3N4/ZnO, and GO/g-C3N4/ZnO. The outcomes indicated that the nanocomposites were highly uncontaminated and contained all necessary elements to facilitate the transformative process. The results of this experiment could be applied at a large scale, thus proving the effectiveness of photocatalysts for the removal of dyes.

19.
Heliyon ; 10(7): e28252, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38689958

RESUMEN

Extreme hot conditions during summers, high poverty rate and continuous electricity load shedding affect commercial manufacturing and sale of ice in many countries. The vendors prepared ice using untreated piped water, tanker water and ground water. These waters may contain hazardous pollutants and ice made from them will pose a potential human health risk. Thus, it is important to regularly monitor the chemical composition of water sources and the quality of the manufactured ice. A contemporary examination was carried out to evaluate the physico-chemical properties and heavy metals and metalloids in the ice sold in all the districts of Karachi, Pakistan. This pioneering study was an innovative effort to assess the ice quality in relation to potential pollutant hazards to human health; with concomitant geospatial information. The geospatial distribution of ice quality and major constituents were among the measured parameters; carefully associated with further geospatial information, determined using GIS (Geographic Information Systems) and PCA (Principal Component Analysis) techniques. Interestingly, the physico-chemical analyses revealed that the ice quality was marginally adequate and the total mean metal-metalloid contents were in the sequence of Pb > Ni > Zn > Fe > Cr > As. The concentrations of these metals were above the upper allowable limits with reference to the recommended WHO guidelines. We observed that 57.1% and 35.7% ice samples had good physico-chemical properties assessed using the Ice Quality Index (IQI). Conversely, the IQI for metals showed that the ice was unsafe for human consumption. In terms of health risk assessment, the overall mean CDI (Chronic Daily Intake) and HQ (Hazard Quotient) values were in the order of Pb () > Ni (3.2) > Zn (2.3) > Fe (2.1) > Cr (1.6) > As (0.5) and Pb (7.4) > As (1.7) > Cr (0.5) > Ni (0.4 > Zn (0.008) > Fe (0.003), respectively. This study highlighted that routine monitoring of the water supplies available for making ice is required to protect public health.

20.
Heliyon ; 10(4): e26573, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38434023

RESUMEN

High protein content, excellent amino acid profile, absence of anti-nutritional factors (ANFs), high digestibility and good palatability of fishmeal (FM), make it a major source of protein in aquaculture. Naturally derived FM is at risk due to an increase in its demand, unsustainable practices, and price. Thus, there is an urgent need to find affordable and suitable protein sources to replace FM. Plant protein sources are suitable due to their widespread availability and low cost. However, they contained certain ANFs, deficiency of some amino acids, low nutrient bioavailability and poor digestibility due to presence of starch and fiber. These unfavourable characteristics make them less suitable for feed as compared to FM. Thus, these potential challenges and limitations associated with various plant proteins have to be overcome by using different methods, i.e. enzymatic pretreatments, solvent extraction, heat treatments and fermentation, that are discussed briefly in this review. This review assessed the impacts of plant products on growth performance, body composition, flesh quality, changes in metabolic activities and immune response of fishes. To minimize the negative effects and to enhance nutritional value of plant products, beneficial functional additives such as citric acid, phytase and probiotics could be incorporated into the plant-based FM. Interestingly, these additives improve growth of fishes by increasing digestibility and nutrient utilization of plant based feeds. Overall, this review demonstrated that the substitution of fishmeal by plant protein sources is a plausible, technically-viable and practical option for sustainable aquaculture feed production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA