Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4145, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842422

RESUMEN

Isocyanides are common compounds in fine and bulk chemical syntheses. However, the direct addition of isocyanide to simple unactivated cyclopropene via transition metal catalysis is challenging. Most of the current approaches focus on 1,1-insertion of isocyanide to M-R or nucleophilc insertion. That is often complicated by the competitive homo-oligomerization reactivity occurring at room temperature, such as isocyanide 1,1-insertion by Ni(II). Here we show a (N-heterocyclic carbene)Ni(II) catalyst that enables cyclopropene-isocyanide [5 + 1] benzannulation. As shown in the broad substrate scope and a [trans-(N-heterocyclic carbene)Ni(isocyanide)Br2] crystal structure, the desired cross-reactivity is cooperatively controlled by the high reactivity of the cyclopropene, the sterically bulky N-heterocyclic carbene, and the strong coordination ability of the isocyanide. This direct addition strategy offers aromatic amine derivatives and complements the Dötz benzannulation and Semmelhack/Wulff 1,4-hydroquinone synthesis. Several sterically bulky, fused, and multi-substituted anilines and unsymmetric functionalized spiro-ring structures are prepared from those easily accessible starting materials expediently.

2.
Commun Chem ; 3(1): 50, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36703443

RESUMEN

Diastereodivergent heterocycle synthesis has been recognized as an important tool for drug discovery in recent years, yet strategies based on nickelacycle formation have not been established. Here, we report a NHC-Ni catalyzed highly 1,3- and 1,4-diastereodivergent heterocycle synthesis from enyne, which is achieved by manipulating the enyne N-substituent (allowing switching of selectivity from up to 2:98 to 98:2). The key to success is the efficient diastereodivergent formation of a nickelacyclopentene, with broad enyne scope at mild conditions, which subsequently provides reductive hydroalkenylation, acylation and silylation products on demand. Diastereoisomers which are sterically hard to distinguish or difficult to access by conventional routes are now accessible easily, including those with very similar 4°, contiguous and skipped stereocenters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA